×

On the reducibility of centrosymmetric matices - applications in engineering problems. (English) Zbl 0674.15005

This work concerns the class \(K^{N\times N}\) of centrosymmetric complex \(N\times N\) matrices and offers a number of results leading to significant computational saving in many engineering applications. A matrix \(R\in C^{N\times N}\) is said to be centrosymmetric if \(R=E_ NRE_ N\), where \(E_ N\) is the contra-identity matrix having ones along the crossdiagonal and zeros elsewhere. The class \(K^{N\times N}\) is closed under addition, multiplication, transposition, inversion and left multiplication by \(E_ N\) (Lemma 3). Every matrix \(R\in K^{N\times N}\) is similar to a quasi-diagonal matrixa \(\hat R=diag(F,G)\), where \(F\in C^{M\times M}\) and \(G\in C^{M\times M}\) for \(N=2M\), or \(G\in C^{(M+1)\times (M+1)}\) for \(N=2M+1\) (Lemma 4). The last Lemma reduces the problem of computing det(R) to two problems of computing det(F) and det(G) (Th. 1).
For \(R\in K^{N\times N}\) having distinct eigenvalues from M linearly independent (l.i.) eigenvectors of F, M. l.i. skew-symmetric eigenvectors of R and from M, or \(M+1\) l.i. eigenvectors of G, M or \(M+1\) symmetric eigenvectors of R can be determined, where \(N=2M\), or \(N=2M+1\), respectively (Th. 2.). Thereby, a vector \(x\in C^{N\times 1}\) is said to be symmetric, or skew-symmetric if \(x=E_ Nx\), or \(x=-E_ Nx\), respectively. In general, for every eigenvalues \(\lambda\) of \(R\in K^{N\times N}\) there is a corresponding symmetric or skew-symmetric eigenvector x of R (see pp. 80-81). The converse of Th. 2 is also true: A matrix \(R\in C^{N\times N}\) having N l.i. eigenvectors which are either symmetric or skew-symmetric, is a centrosymmetric matrix (Th. 7). Some applications of the above results are given.
Reviewer: V.Perić

MSC:

15A23 Factorization of matrices
65F05 Direct numerical methods for linear systems and matrix inversion
00A06 Mathematics for nonmathematicians (engineering, social sciences, etc.)
15B57 Hermitian, skew-Hermitian, and related matrices
15A15 Determinants, permanents, traces, other special matrix functions
Full Text: DOI

References:

[1] S. Zohar, Toeplitz Matrix Inversion: The Algorithm of W. F. Trench,J. Assoc. Comput. Mach., vol. 16, pp. 592–601, Oct. 1962. · Zbl 0194.18102
[2] J. Makhoul, On the Eigenvectors of Symmetric Toeplitz Matrices,IEEE Trans. Acoust. Speech Signal Process., vol. 29, pp. 868–872, Aug. 1981. · doi:10.1109/TASSP.1981.1163635
[3] A. Cantoni and P. Butler,Eigenvalues and Eigenvectors of Symmetric Centrosymmetric Matrices, Linear Algebra Appl., vol. 13, pp. 275–288, 1976. · Zbl 0326.15007 · doi:10.1016/0024-3795(76)90101-4
[4] L. Datta and S. D. Morgera, Comments and Corrections on ”On the Eigenvectors of Symmetric Toeplitz Matrices,”IEEE Trans. Acoust. Speech Signal Process., vol. 32, pp. 440–441, Apr. 1984. · Zbl 0577.15018 · doi:10.1109/TASSP.1984.1164321
[5] S. D. Morgera, On the Reducibility of Finite Toeplitz Matrices–Applications in Speech Analysis and Pattern Recognition,Signal Process., vol. 4, pp. 425–443, Oct. 1982. · doi:10.1016/0165-1684(82)90057-3
[6] A. L. Andrew, Eigenvectors of Certain Matrices,Linear Algebra Appl., vol. 7, pp. 151–162, 1973. · Zbl 0255.65021 · doi:10.1016/0024-3795(73)90049-9
[7] P. J. Davis,Circulant Matrices, New York: Wiley-Interscience, 1979, p. 207.
[8] C. S. Rao,Linear Statistical Inference and Its Applications, New York: Wiley, 1973, p. 40. · Zbl 0256.62002
[9] S. D. Morgera and L. Datta, Toward a Fundamental Theory of Optimal Feature Selection: Part I,IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, pp. 601–616, Sept. 1984. · Zbl 0573.62052 · doi:10.1109/TPAMI.1984.4767573
[10] T. T. Kadota and L. A. Shepp, On the Best Finite Set of Linear Observables for Discriminating Two Gaussian Signals,IEEE Trans. Inform. Theory, vol. 13, pp. 278–284, Apr. 1967. · Zbl 0153.48704 · doi:10.1109/TIT.1967.1054013
[11] D. H. Preis, The Toeplitz Matrix Inversion: Its Occurrence in Antenna Problems and a Rapid Inversion Algorithm,IEEE Trans. Antennas and Propagation, vol. 20, pp. 204–206, Mar. 1972. · doi:10.1109/TAP.1972.1140174
[12] R. F. Harrington, L. F. Chang, and A. T. Adamset al, Matrix Methods for Solving Field Problems, RADC-TR-66-351, vol. 1, Rome Air Dev. Cent., N.Y., Aug. 1966.
[13] B. J. Strait and K. Hirasawa, Application of Matrix Methods to Array Antenna Problems, AFCRL-69-0158, Sci. Rep. 2, Air Force Cambridge Res. Lab., Apr. 1969.
[14] J. A. Cummins, Analysis of a Circular Array of Antennas by Matrix Methods, Ph.D. dissertation, Syracuse University, New York, Feb. 1969.
[15] R. W. P. King, R. B. Mack, and S. S. Sandier,Arrays of Cylindrical Dipoles, Cambridge: Cambridge University Press, 1968, pp. 130–141.
[16] W. F. Trench, An Algorithm for the Inversion of Finite Toeplitz Matrices,J. Soc. Indust. Appl. Math., vol. 12, pp. 512–522, Sept. 1964. · Zbl 0131.36002 · doi:10.1137/0112045
[17] L. Datta and S. D. Morgera, Optimal Feature Selection: Part II–Implementation,Proc. Seventh Intern. Conf. on Pattern Recognition, Montreal, Quebec, July 30–Aug. 2, 1984. · Zbl 0573.62052
[18] L. Meirovitch,Elements of Vibration Analysis, New York: McGraw Hill, 1975. · Zbl 0359.70039
[19] S. Timoshenko, D. H. Young, and W. Weaver, Jr.,Vibration Problems in Engineering, New York: Wiley, 1974.
[20] J. H. Wilkinson,The Algebraic Eigenvalue Problem, Oxford: Clarendon Press, 1965. · Zbl 0258.65037
[21] L. A. Pipes and S. A. Hovanessian,Matrix-Computer Methods in Engineering, New York: Wiley, 1969. · Zbl 0181.16903
[22] R. L. White,Basic Quantum Mechanics, New York: McGraw Hill, 1966.
[23] A. Alonso and E. J. Finn,Fundamental University Physics, Vol. III. Reading, MA: Addison-Wesley, 1968.
[24] A. Messiah,Quantum Mechanics, Vol. I, Amsterdam: North-Holland, 1976. · Zbl 0102.42602
[25] R. M. Gray, On the Asymptotic Eigenvalue Distribution of Toeplitz Matrices,IEEE Trans. Inform. Theory, vol. 18, pp. 725–730, Nov. 1972. · Zbl 0246.94002 · doi:10.1109/TIT.1972.1054924
[26] U. Grenander and G. Szegö,Toeplitz Forms and Their Applications, Berkeley, CA: UCLA Press, 1958. · Zbl 0080.09501
[27] A. Cantoni and P. Butler, Properties of the Eigenvectors of Persymmetric Matrices with Applications to Communication Theory,IEEE Trans. Comm., vol. 24, pp. 804–809, Aug. 1976. · Zbl 0351.94001 · doi:10.1109/TCOM.1976.1093391
[28] D. D. Falconer and F. R. Magee, Jr., Adaptive Channel Memory Truncation for Maximum Likelihood Sequence Estimation,Bell Syst. Tech. J., vol. 52, pp. 1541–1562, 1973. · Zbl 0266.94006
[29] R. W. Chang, A New Equalizer Structure for Fast Start-up Digital Communication,Bell Syst. Tech. J., pp. 1969–2014, Aug. 1971.
[30] F. R. Magee, Jr. and J. G. Proakis, An Estimate of the Upper Bound on Error Probability for Maximum-Likelihood Sequence Estimation on Channels Having a Finite-Duration Pulse Response,IEEE Trans. Inform. Theory, vol. 19, pp. 699–702, Sept. 1973. · Zbl 0266.94007 · doi:10.1109/TIT.1973.1055063
[31] D. C. Farden and L. L. Scharf, Statistical Design of Nonrecursive Digital Filters,IEEE Trans. Acoust. Speech Signal Process., vol. 22, pp. 188–196, June 1974. · doi:10.1109/TASSP.1974.1162569
[32] D. C. Farden and L. L. Scharf, Author’s reply to Butler’s comments on ”Statistical Design of Nonrecursive Digital Filters,”IEEE Trans. Acousl. Speech Signal Process., vol. 23, pp. 495–497, Oct. 1975. · doi:10.1109/TASSP.1975.1162713
[33] H. Clergeot and L. L. Scharf, Connections Between Classical and Statistical Methods of FIR Digital Filter Design,IEEE Trans. Acoust. Speech Signal Process., vol. 26, pp. 463–467, Oct. 1978. · Zbl 0417.93068 · doi:10.1109/TASSP.1978.1163126
[34] J. Makhoul, A Class of All-Zero Lattice Digital Filters: Properties and Applications,IEEE Trans. Acoust. Speech Signal Process., vol. 26, pp. 304–312, Aug. 1978. · Zbl 0414.94026 · doi:10.1109/TASSP.1978.1163096
[35] L. L. Scharf and J. C. Luby, Statistical Design of Autoregressive Moving Average Digital Filters,IEEE Trans. Acoust. Speech Signal Process., vol. 27, pp. 240–247, June 1979. · Zbl 0436.62081 · doi:10.1109/TASSP.1979.1163236
[36] B. D. O. Anderson and E. I. Jury, A Simplified Schur-Cohn Test,IEEE Trans. Automat. Control, vol. 18, pp. 157–163, Apr. 1973. · Zbl 0261.93015 · doi:10.1109/TAC.1973.1100253
[37] P. M. Van Dooran, P. Dewilde, and J. Vandewalle, On the Determination of the Smith-MacMillan Form of a Rational Matrix from Its Laurent Series Expansion,IEEE Trans. Circuits and Systems, vol. 26, pp. 180–189, Mar. 1979. · Zbl 0395.93016 · doi:10.1109/TCS.1979.1084628
[38] H. Krishna and S. D. Morgera, The Levinson Recurrence and Fast Algorithms for Solving Toeplitz Systems of Linear Equations,IEEE Trans. Acoust. Speech Signal Process., vol. 35, pp. 839–848, June 1987. · doi:10.1109/TASSP.1987.1165219
[39] W. Gersch, Estimation of the Autoregressive Parameters of a Mixed Autoregressive Moving-Average Time Series,IEEE Trans. Automat. Control, vol. 15, pp. 583–588, Oct. 1970. · doi:10.1109/TAC.1970.1099560
[40] J. Makhoul, Linear Prediction: A Tutorial Review,Proc. IEEE, vol. 63, pp. 561–580, Apr. 1975. · doi:10.1109/PROC.1975.9792
[41] A. Arcese, On the Method of Maximum Entropy Spectrum Estimation,IEEE Trans. Inform. Theory, vol. 29, pp. 161–164, Jan. 1983. · Zbl 0502.65087 · doi:10.1109/TIT.1983.1056605
[42] S. M. Kay, The Effects of Noise on the Autoregressive Spectral Estimator,IEEE Trans. Acoust. Speech Signal Process., vol. 27, pp. 478–485, Oct. 1979. · Zbl 0441.62084 · doi:10.1109/TASSP.1979.1163275
[43] S. D. Morgera and D. B. Cooper, Structured Estimation: Sample Size Reduction for Adaptive Pattern Classification,IEEE Trans. Inform. Theory, vol. 23, pp. 728–741, Nov. 1977. · Zbl 0391.62038 · doi:10.1109/TIT.1977.1055798
[44] R. M. Gray, A. H. Gray, G. Rebolledo, and J. E. Shore, Rate-Distortion Speech Coding with a Minimum Discrimination Information Distortion Measure,IEEE Trans. Inform. Theory, vol. 27, pp. 708–721, Nov. 1981. · Zbl 0465.94009 · doi:10.1109/TIT.1981.1056410
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.