×

Alexandrov theorem for general nonlocal curvatures: the geometric impact of the kernel. (English. French summary) Zbl 1503.53088

Summary: For a general radially symmetric, non-increasing, non-negative kernel \(h\in L_{\mathrm{loc}}^1(\mathbb{R}^d)\), we study the rigidity of measurable sets in \(\mathbb{R}^d\) with constant nonlocal \(h\)-mean curvature. Under a suitable “improved integrability” assumption on \(h\), we prove that these sets are finite unions of equal balls, as soon as they satisfy a natural nondegeneracy condition. Both the radius of the balls and their mutual distance can be controlled from below in terms of suitable parameters depending explicitly on the measure of the level sets of \(h\). In the simplest, common case, in which \(h\) is positive, bounded and decreasing, our result implies that any bounded open set or any bounded measurable set with finite perimeter which has constant nonlocal \(h\)-mean curvature has to be a ball.

MSC:

53C24 Rigidity results
49Q15 Geometric measure and integration theory, integral and normal currents in optimization
28A75 Length, area, volume, other geometric measure theory

References:

[1] Aleksandrov, A. D., Uniqueness theorems for surfaces in the large. V, Am. Math. Soc. Transl. (2), 21, 412-416 (1962) · Zbl 0119.16603
[2] Barrios, B.; Peral, I.; Soria, F.; Valdinoci, E., A Widder’s type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213, 2, 629-650 (2014) · Zbl 1310.35226
[3] Bonforte, M.; Sire, Y.; Vázquez, J. L., Optimal existence and uniqueness theory for the fractional heat equation, Nonlinear Anal., 153, 142-168 (2017) · Zbl 1364.35416
[4] Bourgain, J.; Brezis, H.; Mironescu, P., Another look at Sobolev spaces, (Optimal Control and Partial Differential Equations (2001), IOS: IOS Amsterdam), 439-455 · Zbl 1103.46310
[5] Bucur, C.; Valdinoci, E., Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, vol. 20 (2016), Springer/Unione Matematica Italiana: Springer/Unione Matematica Italiana Cham/Bologna · Zbl 1377.35002
[6] Bucur, D.; Fragalà, I., Rigidity for measurable sets (2021), arXiv preprint
[7] Burchard, A., Cases of equality in the Riesz rearrangement inequality, Ann. Math. (2), 143, 499-527 (1996) · Zbl 0876.26016
[8] Cabré, X.; Fall, M. M.; Solà-Morales, J.; Weth, T., Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay, J. Reine Angew. Math., 745, 253-280 (2018) · Zbl 1431.53010
[9] Caffarelli, L. A.; Souganidis, P. E., A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs, Commun. Pure Appl. Math., 61, 1, 1-17 (2008) · Zbl 1140.65075
[10] Caffarelli, L. A.; Roquejoffre, J. M.; Savin, O., Nonlocal minimal surfaces, Commun. Pure Appl. Math., 63, 9, 1111-1144 (2010) · Zbl 1248.53009
[11] Chambolle, A.; Morini, M.; Ponsiglione, M., Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218, 3, 1263-1329 (2015) · Zbl 1328.35166
[12] Chambolle, A.; Novaga, M.; Ruffini, B., Some results on anisotropic fractional mean curvature flows, Interfaces Free Bound., 19, 3, 393-415 (2017) · Zbl 1380.53070
[13] Cianchi, A.; Fusco, N., Functions of bounded variation and rearrangements, Arch. Ration. Mech. Anal., 165, 1, 1-40 (2002) · Zbl 1028.49035
[14] Ciraolo, G.; Figalli, A.; Maggi, F.; Novaga, M., Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature, J. Reine Angew. Math., 741, 275-294 (2018) · Zbl 1411.53030
[15] Delgadino, M. G.; Maggi, F., Alexandrov’s theorem revisited, Anal. PDE, 12, 6, 1613-1642 (2019) · Zbl 1418.35205
[16] Dipierro, S.; Savin, O.; Valdinoci, E., Boundary behavior of nonlocal minimal surfaces, J. Funct. Anal., 272, 5, 1791-1851 (2017) · Zbl 1358.49038
[17] Figalli, A.; Valdinoci, E., Regularity and Bernstein-type results for nonlocal minimal surfaces, J. Reine Angew. Math., 729, 263-273 (2017) · Zbl 1380.49060
[18] Frank, R. L.; Seiringer, R., Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255, 12, 3407-3430 (2008) · Zbl 1189.26031
[19] Imbert, C., Level set approach for fractional mean curvature flows, Interfaces Free Bound., 11, 1, 153-176 (2009) · Zbl 1173.35533
[20] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 93-105 (1977) · Zbl 0369.35022
[21] Maggi, F., Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics, vol. 135 (2012), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1255.49074
[22] Mazón, J. M.; Rossi, J. D.; Toledo, J. J., Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets, Frontiers in Mathematics (2019), Birkhäuser/Springer: Birkhäuser/Springer Cham · Zbl 1446.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.