×

Point sets with optimal order of extreme and periodic discrepancy. (English) Zbl 1503.11107

This paper is a continuation and extension of [A. Hinrichs et al., Acta Arith. 199, No. 2, 163–198 (2021; Zbl 1483.11158)]. The notion of discrepancy is a quantitative measure for the regularity of the distribution of a point configuration in the multidimensional unit cube. Choosing different classes of test sets leads to different notions of discrepancy.
In this paper, the authors study \(L^p\) discrepancies with respect to a) axis-parallel boxes anchored at the origin, b) all axis-parallel boxes, c) axis-parallel boxes which are allowed to “wrap around” on the torus.
These classes of test sets lead to the notions of a) star discrepancy, b) extremal discrepancy, and c) periodic discrepancy. The authors are interested in the relation between these different notions of discrepancy, and in their respective minimal possible asymptotic order.

MSC:

11K38 Irregularities of distribution, discrepancy

Citations:

Zbl 1483.11158

References:

[1] J. Beck and W. W. L. Chen, Irregularities of Distribution, Cambridge Univ. Press, Cambridge, 1987. · Zbl 0617.10039
[2] D. Bilyk, On Roth’s orthogonal function method in discrepancy theory, Unif. Distrib. Theory 6 (2011), 143-184. · Zbl 1338.11073
[3] D. Bilyk, M. T. Lacey, and A. Vagharshakyan, On the small ball inequality in all dimensions, J. Funct. Anal. 254 (2008), 2470-2502. · Zbl 1214.42024
[4] D. Bilyk and L. Markhasin, BMO and exponential Orlicz space estimates of the dis-crepancy function in arbitrary dimension, J. Anal. Math. 135 (2018), 249-269. · Zbl 1418.11112
[5] V. A. Bykovsky, On the right order of error of optimal cubature formulas in the spaces with dominating derivation and L 2 -discrepancy of nets, preprint, Far East Science Center of the USSR Acad. Sci., Vladivostok, 1985 (in Russian).
[6] W. W. L. Chen and M. M. Skriganov, Explicit constructions in the classical mean squares problem in irregularity of point distribution, J. Reine Angew. Math. 545 (2002), 67-95. · Zbl 1083.11049
[7] L. L. Cristea, J. Dick, and F. Pillichshammer, On the mean square weighted L2 dis-crepancy of randomized digital nets in prime base, J. Complexity 22 (2006), 605-629. · Zbl 1142.11345
[8] J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order, SIAM J. Numer. Anal. 46 (2008), 1519-1553. · Zbl 1189.42012
[9] J. Dick, A. Hinrichs, L. Markhasin, and F. Pillichshammer, Optimal Lp discrepancy bounds for second order digital sequences, Israel J. Math. 221 (2017), 489-510. · Zbl 1394.11060
[10] J. Dick, A. Hinrichs, and F. Pillichshammer, Proof techniques in quasi-Monte Carlo theory, J. Complexity 31 (2015), 327-371. · Zbl 1316.65002
[11] J. Dick and F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces, J. Complexity 21 (2005), 149-195. · Zbl 1085.41021
[12] J. Dick and F. Pillichshammer, On the mean square weighted L2 discrepancy of ran-domized digital (t, m, s)-nets over Z2, Acta Arith. 117 (2005), 371-403. · Zbl 1080.11058
[13] J. Dick and F. Pillichshammer, Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge Univ. Press, Cambridge, 2010. · Zbl 1282.65012
[14] J. Dick and F. Pillichshammer, Optimal L2 discrepancy bounds for higher order digital sequences over the finite field F2, Acta Arith. 162 (2014), 65-99. · Zbl 1294.11127
[15] J. Dick and F. Pillichshammer, Explicit constructions of point sets and sequences with low discrepancy, in: P. Kritzer et al. (eds.), Uniform Distribution and Quasi-Monte Carlo Methods: Discrepancy, Integration and Applications, Radon Ser. Com-put. Appl. Math., De Gruyter, 2014, 63-86. · Zbl 1335.11061
[16] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997. · Zbl 0877.11043
[17] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Ser. Mod-ern Surv. Math. 90, Springer, Berlin, 1977. · Zbl 0467.42001
[18] H. Faure, Discrépance de suites associées à un système de numération (en dimen-sion s), Acta Arith. 41 (1982), 337-351. · Zbl 0442.10035
[19] K. K. Frolov, Upper bounds for the errors of quadrature formulae on classes of func-tions, Dokl. Akad. Nauk SSSR 231 (1976), 818-821 (in Russian).
[20] V. S. Grozdanov, On the diaphony of two-dimensional finite sequences, C. R. Acad. Bulgare Sci. 48 (1995), 15-18. · Zbl 0851.11044
[21] G. Halász, On Roth’s method in the theory of irregularities of point distributions, in: Recent Progress in Analytic Number Theory, Vol. 2 (Durham, 1979), Academic Press, London, 1981, 79-94. · Zbl 0459.10032
[22] A. Hinrichs, R. Kritzinger, and F. Pillichshammer, Optimal order of Lp discrepancy of digit shifted Hammersley point sets in dimension 2, Unif. Distrib. Theory 10 (2015), 115-133. · Zbl 1340.11062
[23] A. Hinrichs, R. Kritzinger, and F. Pillichshammer, Extreme and periodic L2 discrep-ancy of plane point sets, Acta Arith. 199 (2021), 163-198. · Zbl 1483.11158
[24] A. Hinrichs, L. Markhasin, J. Oettershagen, and T. Ullrich, Optimal quasi-Monte Carlo rules on order 2 digital nets for numerical integration of multivariate periodic functions, Numer. Math. 134 (2016), 163-196. · Zbl 1358.65004
[25] A. Hinrichs and J. Oettershagen, Optimal point sets for quasi-Monte Carlo inte-gration of bivariate periodic functions with bounded mixed derivatives, in: Monte Carlo and Quasi-Monte Carlo Methods, Springer Proc. Math. Statist. 163, Springer, 2016, 385-405. · Zbl 1356.65007
[26] P. Kritzer and F. Pillichshammer, An exact formula for the L2-discrepancy of the shifted Hammersley point set, Unif. Distrib. Theory 1 (2006), 1-13. · Zbl 1147.11041
[27] R. Kritzinger, Finding exact formula for the L2 discrepancy of digital (0, n, 2)-nets via Haar functions, Acta Arith. 187 (2019), 151-187. · Zbl 1454.11136
[28] R. Kritzinger and F. Pillichshammer, Digital nets in dimension two with the optimal order of Lp discrepancy, J. Théor. Nombres Bordeaux 31 (2019), 179-204. · Zbl 1465.11171
[29] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. · Zbl 0281.10001
[30] G. Leobacher and F. Pillichshammer, Introduction to Quasi-Monte Carlo Integration and Applications, Compact Textbooks Math., Birkhäuser/Springer, Cham, 2014. · Zbl 1309.65006
[31] V. F. Lev, On two versions of L 2 -discrepancy and geometrical interpretation of di-aphony, Acta Math. Hungar. 69 (1995), 281-300. · Zbl 0845.11026
[32] V. F. Lev, The exact order of generalized diaphony and multidimensional numerical integration, J. Austral. Math. Soc. Ser. A 66 (1999), 1-17. · Zbl 0926.11054
[33] L. Markhasin, Discrepancy of generalized Hammersley type point sets in Besov spaces with dominating mixed smoothness, Unif. Distrib. Theory 8 (2013), 135-164. · Zbl 1349.11113
[34] L. Markhasin, Quasi-Monte Carlo methods for integration of functions with dominat-ing mixed smoothness in arbitrary dimension, J. Complexity 29 (2013), 370-388. · Zbl 1286.65005
[35] L. Markhasin, Discrepancy and integration in function spaces with dominating mixed smoothness, Dissertationes Math. 494 (2013), 81 pp. · Zbl 1284.46030
[36] L. Markhasin, Lp-and S r p,q B discrepancy of (order 2) digital nets, Acta Arith. 168 (2015), 139-159. · Zbl 1328.11083
[37] J. Matoušek, Geometric Discrepancy, Algorithms Combin. 18, Springer, Berlin, 1999. · Zbl 0930.11060
[38] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337. · Zbl 0626.10045
[39] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Ser. Appl. Math. 63, SIAM, Philadelphia, 1992. · Zbl 0761.65002
[40] K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73-79. · Zbl 0057.28604
[41] W. M. Schmidt, Irregularities of distribution X, in: Number Theory and Algebra, Academic Press, New York, 1977, 311-329. · Zbl 0373.10020
[42] M. M. Skriganov, Harmonic analysis on totally disconnected groups and irregularities of point distributions, J. Reine Angew. Math. 600 (2006), 25-49. · Zbl 1115.11047
[43] G. Wang, Sharp square-function inequalities for conditionally symmetric martingales, Trans. Amer. Math. Soc. 328 (1991), 393-419. · Zbl 0738.60036
[44] Y.-J. Xiao, The diaphony and the star-diaphony of some two-dimensional sequences, in: Monte Carlo and Quasi-Monte Carlo Methods 1998 (Claremont, CA), Springer, Berlin, 2000, 459-470. · Zbl 0970.11030
[45] P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden, Österr. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 185 (1976), 121-132. · Zbl 0356.65007
[46] Steyr, Austria E-mail: ralph.kritzinger@yahoo.de Friedrich Pillichshammer Institute of Financial Mathematics and Applied Number Theory Johannes Kepler University Linz Altenberger Straße 69
[47] Linz, Austria E-mail: friedrich.pillichshammer@jku.at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.