×

Explicit constructions of point sets and sequences with low discrepancy. (English) Zbl 1335.11061

Kritzer, Peter (ed.) et al., Uniform distribution and quasi-Monte Carlo methods. Discrepancy, integration and applications. Based on invited talks of the workspop, Linz, Austria, October 14–18, 2013. Berlin: De Gruyter (ISBN 978-3-11-031789-3/hbk; 978-3-11-031793-0/ebook). Radon Series on Computational and Applied Mathematics 15, 63-86 (2014).
For \(P_{N,s}=\{\mathbf{x}_0,\ldots, \mathbf{x}_{N-1}\}\subset [0,1)^s\), \(q\in [1,\infty]\), the \(L_q\) discrepancy is \[ L_{q,N}(P_{N,s})=\left(\int_{[0,1]^s} \left|\frac{A_{N}([\mathbf{0}, \mathbf{t}),P_{N,s})}{N}-t_1t_2\cdots t_s\right|^q d\mathbf{t} \right)^{1/q}, \] where \(A_{N}([\mathbf{0}, \mathbf{t}),P_{N,s})\) is the number of \(0\leq n\leq N-1\) with \(\mathbf{x}_n\in [\mathbf{0}, \mathbf{t})=[0,t_1)\times\cdots \times [0, t_s)\). The paper under review is a survey about studies of \(L_q\) discrepancy with \(q\in(1,\infty)\) that begin with K. F. Roth’s general lower bound on the \(L_2\) discrepancy of finite point sets [Mathematika 1, 73–79 (1954; Zbl 0057.28604)]. In particular, the authors give an overview of explicit constructions of point sets and sequences with optimal order of \(L_q\) discrepancy.
For the entire collection see [Zbl 1291.11003].

MSC:

11K06 General theory of distribution modulo \(1\)
11K38 Irregularities of distribution, discrepancy

Citations:

Zbl 0057.28604