×

Global existence and boundedness in an \(N\)-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion and rotation. (English) Zbl 1496.35330

A Keller-Segel-Navier-Stokes system with nonlinear diffusion, chemotaxis consumption and rather general tensor-valued sensitivity function is considered in bounded domains in two and three dimensions. Global-in-time existence of weak solutions is studied, and their boundedness. Results in this paper improve those in recent work [J. Zheng et al., Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 150, 46 p. (2022; Zbl 1493.35126)], by an application of a different method.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K55 Nonlinear parabolic equations

Citations:

Zbl 1493.35126
Full Text: DOI

References:

[1] Cao, X., Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term, J. Differ. Equ., 261, 6883-6914 (2016) · Zbl 1352.35092
[2] Cao, X.; Lankeit, J., Global classical small-data solutions for a 3D chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differ. Equ., 55, 55-107 (2016) · Zbl 1366.35075
[3] Chae, M.; Kang, K.; Lee, J., Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Commun. Partial Differ. Equ., 39, 1205-1235 (2014) · Zbl 1304.35481
[4] Duan, R.; Lorz, A.; Markowich, P. A., Global solutions to the coupled chemotaxis-fluid equations, Commun. Partial Differ. Equ., 35, 1635-1673 (2010) · Zbl 1275.35005
[5] Duan, R.; Xiang, Z., A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not., 2014, 1833-1852 (2012) · Zbl 1323.35184
[6] Di Francesco, M.; Lorz, A.; Markowich, P., Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28, 1437-1453 (2010) · Zbl 1276.35103
[7] Friedman, A., Partial Differential Equations (1969), Holt, Rinehart and Winston: Holt, Rinehart and Winston New York · Zbl 0224.35002
[8] Fujiwara, D.; Morimoto, H., An \(L^r\) -theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24, 685-700 (1977) · Zbl 0386.35038
[9] Giga, Y., Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equ., 61, 186-212 (1986) · Zbl 0577.35058
[10] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065
[11] Ishida, S.; Seki, K.; Yokota, T., Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equ., 256, 2993-3010 (2014) · Zbl 1295.35252
[12] Lankeit, J., Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci., 26, 2071-2109 (2016) · Zbl 1354.35059
[13] Li, F.; Li, Y., Global existence and boundedness of weak solutions to a chemotaxis-Stokes system with rotational flux term, Z. Angew. Math. Phys., 70, 1-21 (2019) · Zbl 1417.35077
[14] Liu, J.; Lorz, A., A coupled chemotaxis-fluid model: global existence, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 28, 643-652 (2011) · Zbl 1236.92013
[15] Liu, J.; Wang, Y., Global existence and boundedness in a Keller-Segel-(Navier-)Stokes system with signal-dependent sensitivity, J. Math. Anal. Appl., 447, 499-528 (2017) · Zbl 1354.35170
[16] Lorz, A., Global solutions to the coupled chemotaxis-fluid equations, Math. Models Methods Appl. Sci., 20, 987-1004 (2010) · Zbl 1191.92004
[17] Qi, D.; Zheng, J., A new result for the global existence and boundedness of weak solutions to a chemotaxis-Stokes system with rotational flux term, Z. Angew. Math. Phys., 72, 88 (2021) · Zbl 1466.35089
[18] Simon, J., Compact sets in the space \(L^p(O, T; B)\), Ann. Mat. Pura Appl., 146, 65-96 (1986) · Zbl 0629.46031
[19] Sohr, H., The Navier-Stokes Equations, an Elementary Functional Analytic Approach (2001), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0983.35004
[20] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715 (2012) · Zbl 1382.35127
[21] Tao, Y.; Winkler, M., Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 30, 157-178 (2013) · Zbl 1283.35154
[22] Tuval, I.; Cisneros, L.; Dombrowski, C., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102, 2277-2282 (2005) · Zbl 1277.35332
[23] Wang, W., Global boundedness of weak solutions for a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and rotation, J. Differ. Equ., 268, 7047-7091 (2020) · Zbl 1439.35044
[24] Wang, Y.; Li, X., Boundedness for a 3D chemotaxis-Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity, Z. Angew. Math. Phys., 68, Article 29 pp. (2017), 23 pp. · Zbl 1371.35156
[25] Winkler, M., Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., 37, 319-351 (2012) · Zbl 1236.35192
[26] Winkler, M., Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211, 455-487 (2014) · Zbl 1293.35220
[27] Winkler, M., Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differ. Equ., 54, 3789-3828 (2015) · Zbl 1333.35104
[28] Winkler, M., Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33, 1329-1352 (2016) · Zbl 1351.35239
[29] Winkler, M., Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ., 264, 6109-6151 (2018) · Zbl 1395.35038
[30] Winkler, M., Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotation flux components, J. Evol. Equ., 18, 1267-1289 (2018) · Zbl 1404.35464
[31] Winkler, M., Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems?, Int. Math. Res. Not., 2021, 8106-8152 (2021) · Zbl 1483.35294
[32] Winkler, M., Chemotaxis-Stokes interaction with very weak diffusion enhancement: blow-up exclusion via detection of absorption-induced entropy structures involving multiplicative couplings, Adv. Nonlinear Stud., 22, 1, 88-117 (2022) · Zbl 1511.35053
[33] Xue, C.; Othmer, H. G., Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math., 70, 133-167 (2009) · Zbl 1184.35308
[34] Zhang, Q.; Li, Y., Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, J. Differ. Equ., 259, 3730-3754 (2015) · Zbl 1320.35352
[35] Zhang, Q.; Zheng, X., Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46, 3078-3105 (2014) · Zbl 1444.35011
[36] Zheng, J., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion, J. Differ. Equ., 263, 2606-2629 (2017) · Zbl 1366.35080
[37] Zheng, J., An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equ., 267, 2385-2415 (2019) · Zbl 1472.35232
[38] Zheng, J., Global existence and boundedness in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Ann. Mat., 201, 243-288 (2021) · Zbl 1485.35119
[39] Zheng, J.; Ke, Y., Global bounded weak solutions for a chemotaxis-Stokes system with nonlinear diffusion and rotation, J. Differ. Equ., 289, 182-235 (2021) · Zbl 1465.35108
[40] Zheng, J.; Qi, D.; Ke, Y., Global existence, regularity and boundedness in a higher-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differ. Equ., 61, 150 (2022) · Zbl 1493.35126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.