×

Global existence and boundedness in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. (English) Zbl 1485.35119

Summary: In this paper, we consider the following chemotaxis-Stokes system with nonlinear diffusion and rotational flux \[ \begin{aligned} \left\{ \begin{array}{l} n_t+u\cdot \nabla n=\Delta n^m-\nabla \cdot (nS(x,n,c)\cdot \nabla c),\quad x\in \Omega , t>0,\\ c_t+u\cdot \nabla c=\Delta c-nc,\quad x\in \Omega , t>0,\\ u_t+\nabla P=\Delta u+n\nabla \phi ,\quad x\in \Omega , t>0,\\ \nabla \cdot u=0,\quad x\in \Omega , t>0\ \end{array} \right. \end{aligned} \tag{CNF} \] in a bounded domain \(\Omega \subseteq \mathbb{R}^3\) with smooth boundary, which describes the motion of oxygen-driven swimming bacteria in an incompressible fluid. Here the matrix-valued function \(S\in C^2(\bar{\Omega }\times [0,\infty )^2;\mathbb{R}^{3\times 3})\) fulfills \(|S(x,n,c)| \le S_0(c)\) for all \((x,n,c)\in \bar{\Omega } \times [0, \infty )\times [0, \infty )\) with \(S_0(c)\) nondecreasing on \([0,\infty )\). With developing some new methods (see Sect. 4 and Sect. 5), it is proved that under the condition \(m>\frac{10}{9}\) and proper regularity hypotheses on the initial data, the corresponding initial-boundary problem possesses at least one global weak solution, which is uniformly bounded. In view of \(S\) is a tensor-valued chemotactic sensitivity, it is easy to see that the restriction on \(m\) here is optimal (see Remark 3.1) and thus answer the open problem left in [N. Bellomo et al., Math. Models Methods Appl. Sci. 25, No. 9, 1663–1763 (2015; Zbl 1326.35397)] and [Y. Tao and M. Winkler, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30, No. 1, 157–178 (2013; Zbl 1283.35154)]. This result significantly improves or extends previous results of several authors (see Remark 1.1).

MSC:

35D30 Weak solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
35Q35 PDEs in connection with fluid mechanics
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Bellomo, N.; Belloquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397
[2] Cao, X.; Lankeit, J., Global classical small-data solutions for a 3D chemotaxis NavierC-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Diff. Eqn., 55, 55-107 (2016) · Zbl 1366.35075
[3] Chae, M.; Kang, K.; Lee, J., Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Part. Diff. Eqns., 39, 1205-1235 (2014) · Zbl 1304.35481
[4] Cieślak, T.; Winkler, M., Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21, 1057-1076 (2008) · Zbl 1136.92006
[5] Duan, R.; Lorz, A.; Markowich, PA, Global solutions to the coupled chemotaxis- fluid equations, Comm. Part. Diff. Eqns., 35, 1635-1673 (2010) · Zbl 1275.35005
[6] Duan, R., Xiang, Z.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, (2014), 1833-1852 · Zbl 1323.35184
[7] Di Francesco, M.; Lorz, A.; Markowich, P., Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Cont. Dyn. Syst., 28, 1437-1453 (2010) · Zbl 1276.35103
[8] Giga, Y., Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eqns., 61, 186-212 (1986) · Zbl 0577.35058
[9] Giga, Y., The Stokes operator in \(L^r\) spaces, Proc. Jpn. Acad. S., 2, 85-89 (1981) · Zbl 0471.35069
[10] Herrero, M.; Velázquez, J., A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Super. Pisa Cl. Sci., 24, 633-683 (1997) · Zbl 0904.35037
[11] Hillen, T.; Painter, K., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 183-217 (2009) · Zbl 1161.92003
[12] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Diff. Eqns, 215, 52-107 (2005) · Zbl 1085.35065
[13] Ishida, S.; Seki, K.; Yokota, Y., Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Diff. Eqns., 256, 2993-3010 (2014) · Zbl 1295.35252
[14] Ke, Y.; Zheng, J., An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial. Diff. Eqn., 58, 58-109 (2019) · Zbl 1412.35172
[15] Keller, E.; Segel, L., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[16] Kowalczyk, R., Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305, 566-585 (2005) · Zbl 1065.35063
[17] Lankeit, J., Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci., 26, 2071-2109 (2016) · Zbl 1354.35059
[18] Li, T.; Suen, A.; Xue, C.; Winkler, M., Global small-data solutions of a two-dimensional chemotaxis system with rotational flux term, Math. Models Methods Appl. Sci., 25, 721-746 (2015) · Zbl 1322.35054
[19] Liu, J.; Lorz, A., A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 643-652 (2011) · Zbl 1236.92013
[20] Lorz, A., Global solutions to the coupled chemotaxis-fluid equations, Math. Models Methods Appl. Sci., 20, 987-1004 (2010) · Zbl 1191.92004
[21] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M., Exponential attractor for a chemotaxisgrowth system of equations, Nonlinear Anal. TMA., 51, 119-144 (2002) · Zbl 1005.35023
[22] Sohr, H.: The Navier-Stokes equations. Birkhäuser Verlag, Basel, An elementary functional analytic approach (2001) · Zbl 0983.35004
[23] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Diff. Eqns., 252, 692-715 (2012) · Zbl 1382.35127
[24] Tao, Y.; Winkler, M., Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 157-178 (2013) · Zbl 1283.35154
[25] Tello, JI; Winkler, M., A chemotaxis system with logistic source, Comm. Part. Diff. Eqns., 32, 849-877 (2007) · Zbl 1121.37068
[26] Tuval, I.; Cisneros, L.; Dombrowski, C., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci., 102, 2277-2282 (2005) · Zbl 1277.35332
[27] Wang, L.; Mu, C.; Zheng, P., On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Diff. Eqns., 256, 1847-1872 (2014) · Zbl 1301.35060
[28] Wang, L.; Mu, C.; Zhou, S., Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion, Z. Angew. Math. Phys., 65, 1137-1152 (2014) · Zbl 1305.92024
[29] Wang, L.; Mu, C.; Lin, K.; Zhao, J., Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant, Z. Angew. Math. Phys., 66, 1-16 (2015) · Zbl 1328.92019
[30] Wang, W., Global boundedness of weak solutions for a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and rotation, J. Diff. Eqns. (2020) · Zbl 1439.35044 · doi:10.1016/j.jde.2019.11.072
[31] Wang, Y.; Cao, X., Global classical solutions of a \(3d\) chemotaxis-Stokes system with rotation, Discrete Contin. Dyn. Syst. Ser. B, 20, 3235-3254 (2015) · Zbl 1322.35061
[32] Wang, Y., Li, X.: Boundedness for a 3D chemotaxis-Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity, Z. Angew. Math. Phys., 68(2017), Art. 29, 23 pp · Zbl 1371.35156
[33] Wang, Y.; Xiang, Z., Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: the 3D case, J. Diff. Eqns., 261, 4944-4973 (2016) · Zbl 1345.35054
[34] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Part. Diff. Eqns., 35, 1516-1537 (2010) · Zbl 1290.35139
[35] Winkler, M., Does a volume-filling effect always prevent chemotactic collapse, Math. Methods Appl. Sci., 33, 12-24 (2010) · Zbl 1182.35220
[36] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Diff. Eqns., 248, 2889-2905 (2010) · Zbl 1190.92004
[37] Winkler, M., Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Part. Diff. Eqns., 37, 319-351 (2012) · Zbl 1236.35192
[38] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053
[39] Winkler, M., Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211, 455-487 (2014) · Zbl 1293.35220
[40] Winkler, M., Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calculus of Variations and Part, Diff. Eqns., 54, 3789-3828 (2015) · Zbl 1333.35104
[41] Winkler, M., Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47, 3092-3115 (2015) · Zbl 1330.35202
[42] Winkler, M., Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 1329-1352 (2016) · Zbl 1351.35239
[43] Winkler, M., How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Am. Math. Soc., 369, 3067-3125 (2017) · Zbl 1356.35071
[44] Winkler, M., Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Diff. Eqns., 264, 6109-6151 (2018) · Zbl 1395.35038
[45] Winkler, M.: Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems?, Int. Math. Res. Not., (2019), doi:10.1093/imrn/rnz056 · Zbl 1483.35294
[46] Xue, C.; Othmer, HG, Multiscale models of taxis-driven patterning in bacterial population, SIAM J. Appl. Math., 70, 133-167 (2009) · Zbl 1184.35308
[47] Xue, C., Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling, J. Math. Biol., 70, 1-44 (2015) · Zbl 1375.92012
[48] Zhang, Q.; Li, Y., Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, J. Diff. Eqns., 259, 3730-3754 (2015) · Zbl 1320.35352
[49] Zhang, Q.; Zheng, X., Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46, 3078-3105 (2014) · Zbl 1444.35011
[50] Zheng, J., Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Diff. Eqns., 259, 120-140 (2015) · Zbl 1331.92026
[51] Zheng, J., Boundedness of solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis-haptotaxis model with generalized logistic source, Nonlinearity, 30, 1987-2009 (2017) · Zbl 1368.92033
[52] Zheng, J., A note on boundedness of solutions to a higher-dimensional quasi-linear chemotaxis system with logistic source, Zeitsc. Angew. Mathe. Mech., 97, 414-421 (2017) · Zbl 1529.92008
[53] Zheng, J.: Global boundedness of weak solutions for a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and rotation, Preprint · Zbl 1439.35044
[54] Zheng, J.: Boundedness and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, Preprint
[55] Zheng, J., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion, J. Diff. Eqns., 263, 2606-2629 (2017) · Zbl 1366.35080
[56] Zheng, J., An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Diff. Eqns., 267, 2385-2415 (2019) · Zbl 1472.35232
[57] Zheng, J.; Ke, Y., Blow-up prevention by nonlinear diffusion in a 2D Keller-Segel-Navier-Stokes system with rotational flux, J. Diff. Eqns., 268, 7092-7120 (2020) · Zbl 1445.35290
[58] Zheng, J.; Ke, Y., Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in \(N\) dimensions, J. Diff. Eqns., 266, 1969-2018 (2019) · Zbl 1416.92031
[59] Zheng, J.; Wang, Y., A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant, Discr. Cont. Dyn. Syst. B, 22, 669-686 (2017) · Zbl 1360.35092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.