×

Does a volume-filling effect always prevent chemotactic collapse? (English) Zbl 1182.35220

Summary: The parabolic-parabolic Keller-Segel system for chemotaxis phenomena,
\[ \begin{cases} u_t=\nabla\cdot (\varphi(u)\nabla u)-\nabla\cdot(\psi(u)\nabla v), &x\in\Omega,\;t>0,\\ v_t=\Delta v-v+u, &x\in\Omega,\;t>0,\end{cases} \]
is considered under homogeneous Neumann boundary conditions in a smooth bounded domain \(\Omega\subset\mathbb R^n\) with \(n\geq 2\).
It is proved that if \(\psi(u)/\varphi(u)\) grows faster than \(u^{2/n}\) as \(u\to\infty\) and some further technical conditions are fulfilled, then there exist solutions that blow up in either finite or infinite time. Here, the total mass \(\int_\Omega u(x,t)\,dx\) may attain arbitrarily small positive values.
In particular, in the framework of chemotaxis models incorporating a volume-filling effect in the sense of K. J. Painter and T. Hillen [Can. Appl. Math. Q. 10, No. 4, 501–543 (2002; Zbl 1057.92013)], the results indicate how strongly the cellular movement must be inhibited at large cell densities in order to rule out chemotactic collapse.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B44 Blow-up in context of PDEs
92C17 Cell movement (chemotaxis, etc.)
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs

Citations:

Zbl 1057.92013
Full Text: DOI

References:

[1] Keller, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology 26 pp 399– (1970) · Zbl 1170.92306
[2] Hillen, A user’s guide to PDE models for chemotaxis, Journal of Mathematical Biology 58 (1-2) pp 183– (2009) · Zbl 1161.92003
[3] Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Advances in Mathematical Sciences and Applications 5 pp 581– (1995) · Zbl 0843.92007
[4] Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, Journal of Inequalities and Applications 6 pp 37– (2001) · Zbl 0990.35024
[5] Jäger, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society 329 pp 817– (1992) · Zbl 0746.35002
[6] Levine, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM Journal on Applied Mathematics 57 (3) pp 683– (1997) · Zbl 0874.35047
[7] Levine, Partial differential equations of chemotaxis and angiogenesis, Mathematical Methods in the Applied Sciences 24 pp 405– (2001) · Zbl 0990.35014
[8] Herrero, A blow-up mechanism for a chemotaxis model, Annali Della Scuola Normale Superiore 24 pp 663– (1997) · Zbl 0904.35037
[9] Horstmann, Blow-up in a chemotaxis model without symmetry assumptions, European Journal of Applied Mathematics 12 pp 159– (2001) · Zbl 1017.92006
[10] Winkler, Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations · Zbl 1190.92004
[11] Cieślak T, Laurencot PH. Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system. Preprint, 2009.
[12] Nagai, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Mathematical Journal 30 pp 463– (2000) · Zbl 0984.35079
[13] Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresberichte Der Deutsche Mathematiker-Vereinigung 105 (3) pp 103– (2003) · Zbl 1071.35001
[14] Painter, Volume-filling and quorum-sensing in models for chemosensitive movement, Canadian Applied Mathematics Quarterly 10 (4) pp 501– (2002) · Zbl 1057.92013
[15] Hillen, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Advances in Applied Mathematics 26 pp 280– (2001) · Zbl 0998.92006
[16] Wrzosek, Long-time behaviour of solutions to a chemotaxis model with volume-filling effect, Proceedings of the Royal Society of Edinburgh 136A pp 431– (2006) · Zbl 1104.35007
[17] Calvez, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, Journal de Mathématiques Pures et Appliquées 86 pp 155– (2006) · Zbl 1116.35057
[18] Horstmann, Boundedness vs blow-up in a chemotaxis system, Journal of Differential Equations 215 (1) pp 52– (2005) · Zbl 1085.35065
[19] Cieślak, Global existence of solutions to a chemotaxis system with volume filling effect, Colloquium Mathematicum 111 (1) pp 117– (2008) · Zbl 1170.92004
[20] Cieślak, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity 21 pp 1057– (2008)
[21] Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Analysis-Theory, Methods and Applications · Zbl 1183.92012
[22] Nagai, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, International Series 40 pp 411– (1997) · Zbl 0901.35104
[23] Levine, The role of critical exponents in blowup theorems, SIAM Reviews 32 (2) pp 262– (1990) · Zbl 0706.35008
[24] Senba, Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods and Applications of Analysis 8 pp 349– (2001) · Zbl 1056.92007 · doi:10.4310/MAA.2001.v8.n2.a9
[25] Gajewski, Global behavior of a reaction-diffusion system modelling chemotaxis, Mathematische Nachrichten 195 pp 77– (1998) · Zbl 0918.35064 · doi:10.1002/mana.19981950106
[26] Ladyzenskaja, Linear and Quasi-linear Equations of Parabolic Type (1968)
[27] Amann, Dynamic theory of quasilinear parabolic systems III global existence, Mathematische Zeitschrift 202 pp 219– (1989) · Zbl 0702.35125
[28] Cieślak, Quasilinear nonuniformly parabolic system modelling chemotaxis, Journal of Mathematical Analysis and Applications 326 (2) pp 1410– (2007) · Zbl 1112.35087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.