×

Singularities of zero sets of semi-invariants for quivers. (English) Zbl 1495.16016

Let \(k\) be an algebraically closed field, let \(Q\) be a finite quiver, and let \(\alpha\) be a dimension vector. Denote by \(\mathrm{Rep}(Q,\alpha)\) the affine variety of representations of \(Q\) over \(k\) with dimension vector \(\alpha\). Suppose \(\alpha\) is prehomogeneous under the action of the product of general linear groups \(\mathrm{GL}(\alpha)\) acting on \(\mathrm{Rep}(Q,\alpha)\). By [C. Riedtmann and G. Zwara, Ann. Sci. Éc. Norm. Supér. (4) 36, No. 6, 969–976 (2003; Zbl 1067.16022)], the nullcone in \(\mathrm{Rep}(Q,N\cdot \alpha)\) becomes a complete intersection for large numbers \(N\). The author shows that it also becomes reduced and gives sharp bounds for \(N\) if \(Q\) is a Dynkin quiver. Using Bernstein-Sato polynomials, the author studies whether zero sets of semi-invariants have rational singularities. In particular, he shows that if \(Q\) is a Dynkin quiver then all codimension one orbit closures have rational singularities.

MSC:

16G20 Representations of quivers and partially ordered sets
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials

Citations:

Zbl 1067.16022

References:

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the representation theory of associative algebras, vol. 1, London Mathematical Society Student Texts 65, Cambridge University Press, 2006. · Zbl 1092.16001 · doi:10.1017/CBO9780511614309
[2] G. Bobiński, “Normality of maximal orbit closures for Euclidean quivers”, Canad. J. Math. 64:6 (2012), 1222-1247. · Zbl 1288.16015 · doi:10.4153/CJM-2012-012-7
[3] G. Bobiński and G. Zwara, “Normality of orbit closures for Dynkin quivers of type \[\mathbb A_n\]”, Manuscripta Math. 105:1 (2001), 103-109. · Zbl 1031.16012 · doi:10.1007/PL00005871
[4] G. Bobiński and G. Zwara, “Schubert varieties and representations of Dynkin quivers”, Colloq. Math. 94:2 (2002), 285-309. · Zbl 1013.14011 · doi:10.4064/cm94-2-10
[5] K. Bongartz, “Tilted algebras”, pp. 26-38 in Representations of algebras (Puebla, 1980), Lecture Notes in Math. 903, Springer, 1981. · Zbl 0465.00011
[6] K. Bongartz, “On degenerations and extensions of finite-dimensional modules”, Adv. Math. 121:2 (1996), 245-287. · Zbl 0862.16007 · doi:10.1006/aima.1996.0053
[7] N. Budur, M. Mustaţă, and M. Saito, “Bernstein-Sato polynomials of arbitrary varieties”, Compos. Math. 142:3 (2006), 779-797. · Zbl 1112.32014 · doi:10.1112/S0010437X06002193
[8] C. Chang and J. Weyman, “Representations of quivers with free module of covariants”, J. Pure Appl. Algebra 192:1-3 (2004), 69-94. · Zbl 1064.16014 · doi:10.1016/j.jpaa.2004.02.015
[9] D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics 150, Springer, 1995. · Zbl 0819.13001 · doi:10.1007/978-1-4612-5350-1
[10] J. Farkas, “Theorie der einfachen Ungleichungen”, J. Reine Angew. Math. 124 (1902), 1-27. · JFM 32.0169.02 · doi:10.1515/crll.1902.124.1
[11] A. Gyoja, “Theory of prehomogeneous vector spaces without regularity condition”, Publ. Res. Inst. Math. Sci. 27:6 (1991), 861-922. · Zbl 0773.14025 · doi:10.2977/prims/1195169004
[12] W. H. Hesselink, “Desingularizations of varieties of nullforms”, Invent. Math. 55:2 (1979), 141-163. · Zbl 0401.14006 · doi:10.1007/BF01390087
[13] V. G. Kac, “Infinite root systems, representations of graphs and invariant theory”, Invent. Math. 56:1 (1980), 57-92. · Zbl 0427.17001 · doi:10.1007/BF01403155
[14] R. Kinser and J. Rajchgot, “Type \[A\] quiver loci and Schubert varieties”, J. Commut. Algebra 7:2 (2015), 265-301. · Zbl 1351.14031 · doi:10.1216/JCA-2015-7-2-265
[15] H. Kraft and G. W. Schwarz, “Representations with a reduced null cone”, pp. 419-474 in Symmetry: representation theory and its applications, Progr. Math. 257, Springer, 2014. · Zbl 1336.20047 · doi:10.1007/978-1-4939-1590-3_15
[16] A. C. Lőrincz, “The \[b\]-functions of semi-invariants of quivers”, J. Algebra 482 (2017), 346-363. · Zbl 1411.16015 · doi:10.1016/j.jalgebra.2017.03.028
[17] N. Q. Loc and G. Zwara, “Modules and quiver representations whose orbit closures are hypersurfaces”, Colloq. Math. 134:1 (2014), 57-74. · Zbl 1297.14007 · doi:10.4064/cm134-1-2
[18] A. C. Lőrincz, “Decompositions of Bernstein-Sato polynomials and slice”, Transformation Groups 25:2 (2020), 577-607. · Zbl 1454.16018 · doi:10.1007/s00031-019-09526-7
[19] S. Materna, “Quiver representations with an irreducible null cone”, J. Algebra 324:10 (2010), 2832-2859. · Zbl 1241.16013 · doi:10.1016/j.jalgebra.2010.05.028
[20] S. Materna, “Perpendicular categories, null cones and dense orbits”, J. Algebra 376 (2013), 58-78. · Zbl 1325.16013 · doi:10.1016/j.jalgebra.2012.11.025
[21] C. Riedtmann and A. Schofield, “On open orbits and their complements”, J. Algebra 130:2 (1990), 388-411. · Zbl 0696.16025 · doi:10.1016/0021-8693(90)90089-7
[22] C. Riedtmann and G. Zwara, “On the zero set of semi-invariants for quivers”, Ann. Sci. École Norm. Sup. (4) 36:6 (2003), 969-976. · Zbl 1067.16022 · doi:10.1016/j.ansens.2003.02.001
[23] C. Riedtmann and G. Zwara, “On the zero set of semi-invariants for tame quivers”, Comment. Math. Helv. 79:2 (2004), 350-361. · Zbl 1063.14052 · doi:10.1007/s00014-003-0797-2
[24] C. Riedtmann and G. Zwara, “Orbit closures and rank schemes”, Comment. Math. Helv. 88:1 (2013), 55-84. · Zbl 1266.14038 · doi:10.4171/CMH/278
[25] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics 1099, Springer, 1984. · Zbl 0546.16013 · doi:10.1007/BFb0072870
[26] M. Saito, “On \[b\]-function, spectrum and rational singularity”, Math. Ann. 295:1 (1993), 51-74. · Zbl 0788.32025 · doi:10.1007/BF01444876
[27] M. Sato and T. Shintani, “Theory of prehomogeneous vector spaces (algebraic part)”, Nagoya Mathematical Journal 120 (1990), 1-34. · Zbl 0715.22014 · doi:10.1017/s0027763000003214
[28] A. Schofield, “Semi-invariants of quivers”, J. London Math. Soc. (2) 43:3 (1991), 385-395. · Zbl 0779.16005 · doi:10.1112/jlms/s2-43.3.385
[29] A. Schofield, “The field of definition of a real representation of a quiver \[Q\]”, Proc. Amer. Math. Soc. 116:2 (1992), 293-295. · Zbl 0782.16009 · doi:10.2307/2159732
[30] K. Sugiyama, “\[b\]-functions associated with quivers of type \[A\]”, Transform. Groups 16:4 (2011), 1183-1222. · Zbl 1281.11101 · doi:10.1007/s00031-011-9135-8
[31] K. Ukai, “\[b\]-functions of prehomogeneous vector spaces of Dynkin-Kostant type for exceptional groups”, Compositio Math. 135:1 (2003), 49-101. · Zbl 1053.20040
[32] J. Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics 149, Cambridge University Press, 2003. · Zbl 1075.13007 · doi:10.1017/CBO9780511546556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.