×

Sharp local smoothing estimates for Fourier integral operators. (English) Zbl 1494.42013

Ciatti, Paolo (ed.) et al., Geometric aspects of harmonic analysis. Proceedings of the INdAM meeting, Cortona, Italy, June 25–29, 2018. Cham: Springer. Springer INdAM Ser. 45, 29-105 (2021).
The paper under review is a survey on the local smoothing conjecture for Fourier integral operators.
For the purposes of the paper under review, the investigation of FIOs dates back to the groundbreaking treaties [L. Hörmander, Acta Math. 127, 79–183 (1971; Zbl 0212.46601)] and [J. J. Duistermaat and L. Hörmander, ibid. 128, 183–269 (1972; Zbl 0232.47055)]. An FIO of order \(\mu\) is an operator that one originally defines on \(\mathcal{S}(\mathbb{R}^d)\) as \[ \mathcal{F}f(x):=\frac{1}{(2\pi)^d}\int_{\mathbb{R}^d}e^{i\phi(x,\xi)}a(x,\xi)\widehat{f}(\xi)\,\mbox{d}\xi \] where \(\widehat{f}\) is the Fourier integral of \(f\), \(\Phi\), the phase factor, is homogeneous of degree 1 in \(\xi\) and smooth away from \(\xi=0\) on the support of \(a\) while the amplitude \(a\) is in a smoothness class \(S^\mu\).
For the sake of this review, one might concentrate on the half-wave propagators given by \[ e^{\mp it\sqrt{-\Delta}}f(x):=\frac{1}{(2\pi)^d}\int_{\mathbb{R}^d}e^{i(\langle x,\xi\rangle\pm t|\xi|)} \widehat{f}(\xi) \,\mbox{d}\xi \] which are of order \(0\) and allow to solve the wave equation. Note that this operator depends on a parameter \(t\) that will play a key role in the future. The first aim of this survey is to provide a gentle introduction to FIOs in which the main concepts and results are introduced. Under a reasonable conjecture on the phase function (the so-called Mixed Hessian Condition), the boundedness of FIOs on \(L^p\) has been established in [A. Seeger et al., Ann. Math. (2) 134, No. 2, 231–251 (1991; Zbl 0754.58037)]. More precisely, if \(\mathcal{F}\) is an FIO of order \(\mu\) and \(1<p<+\infty\) then \[ \|\mathcal{F}f\|_{L^p_{-\mu-\tilde s_p}(\mathbb{R}^d)}\lesssim\|f\|_{L^p(\mathbb{R}^d)}\tag{1} \] where \(L^p_s\) stands for an \(L^p\) (Sobolev space of order \(s\)) and \(\bar s_p=(d-1)\left|\dfrac{1}{p}-\dfrac{1}{2}\right|\). The local smoothing estimate deals with a \(1\)-parameter family of FIOs \((\mathcal{F}_t)_t\) like the half-wave propagators \(e^{\pm i\sqrt{-\Delta}}\). Now, the FIOs are given by a phase factor \(\phi(x,\xi,t)\) and an amplitude \(a(x,\xi,t)\) depend on a “time” parameter \(t\). To explain the conjecture, note that (1) would directly imply an estimate of the form \[ \left(\int_{t\in[0,1]}\|\mathcal{F}_tf\|_{L^p_{-\mu-\bar s_p}(\mathbb{R}^d)}^p\,\mbox{d}t\right)^{1/p} \lesssim\|f\|_{L^p(\mathbb{R}^d)}. \] The local smoothing conjecture asserts that under some conditions on the amplitude and phase (still a “mixed Hessian condition” for \(\phi\) and a “curvature condition”), averaging in time allows for improving the smoothness of \(\mathcal{F}_t\) i.e. that one might replace \(-\mu-\bar s_p\) by a large smoothness index. \[ S_R^\delta f(x)=\frac{1}{(2\pi)^d}\int_{\mathbb{R}^d}e^{\langle x,\xi\rangle}(1-|t/R|)_+^\delta\widehat{f}(\xi)\,\mbox{d}\xi. \] Conjecture (Bochner Riesz): Let \(1\leq p\leq +\infty\), \(\delta(p)=\max\left(d\left|\dfrac{1}{2}-\dfrac{1}{p}\right|,0\right)\). Then, if \(f\in L^p(\mathbb{R}^d)\) and \(\delta<\delta(p)\), \(S_R^\delta f\to f\) in \(L^p\) when \(R\to\infty\). The Bochner-Riesz conjecture is known to imply the Restriction Conjecture (which roughly asks for which \(p\)’s can the Fourier transform of an \(f\in L^p(\mathbb{R}^d)\) be meaningfully be restricted to the unit sphere of \(\mathbb{R}^d\)). In turn, the restriction conjecture implies the Kakeya conjecture (which roughly speaking concerns how tubes that point in different directions can overlap). In the simplest case of the half-wave propagator (for which \(\mu=0\)), the conjecture is the following [C. D. Sogge, Invent. Math. 104, No. 2, 349–376 (1991; Zbl 0754.35004)]: Conjecture (Local Smoothing for the half-wave propagator on \(\mathbb{R}^d\)). For \(d\geq 2\), the inequality \[ \left(\int_{t\in[0,1]}\|e^{it\sqrt{-\Delta}}f\|_{L^p_{\sigma-\bar s_p}(\mathbb{R}^d)}^p\,\mbox{d}t\right)^{1/p} \lesssim\|f\|_{L^p(\mathbb{R}^d)}. \] holds for all \(f\in L^p(\mathbb{R}^d)\) when \(\sigma<1/p\) if \(\frac{2d}{d-1}\leq p<+\infty\) and \(\sigma<\bar s_p\) if \(2<p\leq \frac{2d}{d-1}\). Even in the case \(d=2\), this conjecture is still open, despite numerous partial results. The survey gives the state of the art on this conjecture. The importance of this conjecture is explained in Section 3 of the survey as its relations to other important results and conjectures in harmonic analysis are explained. First, it is shown that the Local Smoothing Conjecture for the half-wave propagator on \(\mathbb{R}^d\) implies the Bochner-Riesz Conjecture about summability of classical Fourier integrals: define the Bochner-Riesz Means as \[ S_R^\delta f(x)=\frac{1}{(2\pi)^d}\int_{\mathbb{R}^d}e^{\langle x,\xi\rangle}(1-|t/R|)_+^\delta\widehat{f}(\xi)\,\mbox{d}\xi. \]
The connection between the local smoothing conjecture and estimates of the spherical maximal function is also explained. In particular, it is shown how some known cases of the local smoothing conjecture imply the Circular Maximal Theorem, [J. Bourgain, J. Anal. Math. 47, 69–85 (1986; Zbl 0626.42012)]. For general \(1\)-parameter families of FIOs, it turns out that the range of smoothness has to be restricted. Indeed, as surveyed in Section 4, there exist, families of FIOs \(\mathcal{F},_t\) such that one may not replace \(e^{-i\sqrt{-\Delta}}\) by \(\mathcal{F}_t\) in the local smoothing conjecture and a new conjecture needs to be made: Conjecture (Local smoothing for general families of FIOs). For \(d\geq 2\), \[ \bar p_d=\begin{cases}\dfrac{2(d+1)}{d-1}&\mbox{ when }d\text{ is odd}\\ \dfrac{2(d+2)}{d}& \mbox{ when }d\text{ is even}\end{cases}. \] Let \(\bar p_d\leq p<+\infty\) and \(\sigma<1/p\). Let \(\mathcal{F}_t\) be a family of FIOs of order \(\mu\) satisfying a mixed Hessian condition and a curvature condition. Then the inequality \[ \left(\int_{t\in[0,1]}\|\mathcal{F}_tf\|_{L^p_{\sigma-\bar s_p}(\mathbb{R}^d)}^p\,\mbox{d}t\right)^{1/p} \lesssim\|f\|_{L^p(\mathbb{R}^d)}. \] holds for all \(f\in L^p(\mathbb{R}^d)\).
The main aim of this survey is to present an outline proof of this conjecture when the dimension \(d\) is odd, following the author’s work [D. Beltran et al., Anal. PDE 13, No. 2, 403–433 (2020; Zbl 1436.35340)]. The main ingredient here is a decoupling inequality and is based on T. Wolff’s approach to the local smoothing conjecture [T. Wolff, Geom. Funct. Anal. 10, No. 5, 1237–1288 (2000; Zbl 0972.42005)]. The key ingredient (to which Section 5 is devoted) is an extension of the celebrated Bourgain-Demeter Decoupling Inequality [J. Bourgain and C. Demeter, Ann. Math. (2) 182, No. 1, 351–389 (2015; Zbl 1322.42014)] that was extended by the authors to the variable coefficient setting.
This survey covers many topics related to several conjectures central to modern harmonic analysis and presents some of the most advanced techniques in the field. It can be considered a must-read for people willing to keep up to date with those topics.
For the entire collection see [Zbl 1470.42001].

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B37 Harmonic analysis and PDEs

References:

[1] Littman, W.: \(L^{}\) p − \(L^{}\) q-Estimates for Singular Integral Operators Arising from Hyperbolic Equations. Partial Differential Equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), American Mathematical Society, Providence, (1973), pp. 479-481. MR 0358443 · Zbl 0263.44006
[2] Stein, E.M.: Oscillatory Integrals in Fourier Analysis. Beijing Lectures in Harmonic Analysis (Beijing, 1984). Annals of Mathematics Studies, vol. 112. Princeton University Press, Princeton (1986), pp. 307-355. MR 864375 · Zbl 0618.42006
[3] Bourgain, J.: Some New Estimates on Oscillatory Integrals. Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991). Princeton Math. Ser., vol. 42, Princeton University Press, Princeton (1995), pp. 83-112. MR 1315543 · Zbl 0840.42007
[4] Beltran, D., Ramos, J.P., Saari, O.: Regularity of fractional maximal functions through Fourier multipliers. J. Funct. Anal. 276(6), 1875-1892 (2019). MR 3912794 · Zbl 1422.42012
[5] Bennett, J., Carbery, A., Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196(2), 261-302 (2006). MR 2275834 · Zbl 1203.42019
[6] Bourgain, J.: Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69-85 (1986). MR 874045 · Zbl 0626.42012
[7] Bourgain, J.: Estimates for Cone Multipliers. Geometric Aspects of Functional Analysis (Israel, 1992-1994). Operator Theory: Advances and Applications, vol. 77. Birkhäuser, Basel (1995), pp. 41-60. MR 1353448 · Zbl 0833.43008
[8] Bourgain, J., Demeter, C.: The proof of the \(l^2\) decoupling conjecture. Ann. Math. (2) 182(1), 351-389 (2015). MR 3374964 · Zbl 1322.42014
[9] Bourgain, J., Demeter, C.: A study guide for the \(l^2\) decoupling theorem. Chin. Ann. Math. Ser. B 38(1), 173-200 (2017). MR 3592159 · Zbl 1370.42021
[10] Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21(6), 1239-1295 (2011). MR 2860188 · Zbl 1237.42010
[11] Chavel, I.: Riemannian Geometry, 2nd edn., Cambridge Studies in Advanced Mathematics, vol. 98. Cambridge University Press, Cambridge (2006). A modern introduction. MR 2229062 · Zbl 1099.53001
[12] Constantin, P., Saut, J.-C.: Local smoothing properties of dispersive equations. J. Amer. Math. Soc. 1(2), 413-439 (1988). MR 928265 · Zbl 0667.35061
[13] Duistermaat, J.J.: Fourier Integral Operators. Modern Birkhäuser Classics. Birkhäuser, Springer, New York (2011). Reprint of the 1996 edition [MR1362544], based on the original lecture notes published in 1973 [MR0451313]. MR 2741911 · Zbl 1214.35092
[14] Duistermaat, J.J., Hörmander, L.: Fourier integral operators. II. Acta Math. 128(3-4), 183-269 (1972). MR 0388464 · Zbl 0232.47055
[15] Egorov, J.V.: The canonical transformations of pseudodifferential operators. Uspehi Mat. Nauk 24(5)(149), 235-236 (1969). MR 0265748 · Zbl 0191.43802
[16] Èskin, G.I.: The Cauchy problem for hyperbolic convolution equations. Mat. Sb. (N.S.) 74(116), 262-297 (1967). MR 0509918 · Zbl 0162.19903
[17] Èskin, G.I.: Degenerate elliptic pseudodifferential equations of principal type. Mat. Sb. (N.S.) 82(124), 585-628 (1970). MR 0510219 · Zbl 0203.41402
[18] Fefferman, C.: The multiplier problem for the ball. Ann. Math. (2) 94, 330-336 (1971). MR 0296602 (45 #5661) · Zbl 0234.42009
[19] Garrigós, G., Seeger, A.: On plate decompositions of cone multipliers. Proc. Edinb. Math. Soc. (2) 52(3), 631-651 (2009). MR 2546636 · Zbl 1196.42010
[20] Garrigós, G., Seeger, A.: A Mixed Norm Variant of Wolff’s Inequality for Paraboloids. Harmonic analysis and partial differential equations. Contemporary Mathematics, vol. 505. American Mathematical Society, Providence (2010), pp. 179-197. MR 2664568 · Zbl 1202.42021
[21] Guo, S., Hickman, J., Lie, V., Roos, J.: Maximal operators and Hilbert transforms along variable non-flat homogeneous curves. Proc. Lond. Math. Soc. (3) 115(1), 177-219 (2017). MR 3669936 · Zbl 1388.42039
[22] Guo, S., Roos, J., Yung, P.-L.: Sharp variation-norm estimates for oscillatory integrals related to Carleson’s theorem. Anal. PDE 13(5), 1457-1500 (2020) · Zbl 1452.42010 · doi:10.2140/apde.2020.13.1457
[23] Guth, L., Hickman, J., Iliopoulou, M.: Sharp estimates for oscillatory integral operators via polynomial partitioning. To appear. Acta Math. arxiv.org/abs/1710.10349 · Zbl 1430.42016
[24] Heo, Y., Nazarov, F., Seeger, A.: Radial Fourier multipliers in high dimensions. Acta Math. 206(1), 55-92 (2011). MR 2784663 · Zbl 1219.42006
[25] Hörmander, L.: The spectral function of an elliptic operator. Acta Math. 121, 193-218 (1968). MR 0609014 · Zbl 0164.13201
[26] Hörmander, L.: Fourier integral operators. I. Acta Math. 127, 79-183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052
[27] Hörmander, L.: Oscillatory integrals and multipliers on \(FL^{}\) p. Ark. Mat. 11, 1-11 (1973). MR 0340924 · Zbl 0254.42010
[28] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin (2003). Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. MR 1996773 · Zbl 1028.35001
[29] Hörmander, L.: The Analysis of Linear Partial Differential Operators. IV. Classics in Mathematics. Springer, Berlin (2009). Fourier integral operators, Reprint of the 1994 edition. MR 2512677 · Zbl 1178.35003
[30] Łaba, I., Wolff, T.: A local smoothing estimate in higher dimensions. J. Anal. Math. 88, 149-171 (2002). Dedicated to the memory of Tom Wolff. MR 1956533 · Zbl 1042.42006
[31] Lax, P.D.: Asymptotic solutions of oscillatory initial value problems. Duke Math. J. 24, 627-646 (1957). MR 0097628 · Zbl 0083.31801
[32] Lee, S.: Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces, J. Funct. Anal. 241(1), 56-98 (2006). MR 2264247 · Zbl 1121.35151
[33] Lee, J.: Trilinear approach to square function and local smoothing estimates for the wave operator (2016). arxiv.org/abs/1607.08426
[34] Lee, S., Seeger, A.: Lebesgue space estimates for a class of Fourier integral operators associated with wave propagation, Math. Nachr. 286(7), 743-755 (2013). MR 3060843 · Zbl 1269.42008
[35] Lee, S., Vargas, A.: On the cone multiplier in \(\mathbb{R}^3\). J. Funct. Anal. 263(4), 925-940 (2012). MR 2927399 · Zbl 1252.42014
[36] Minicozzi, W.P., II, Sogge, C.D.: Negative results for Nikodym maximal functions and related oscillatory integrals in curved space. Math. Res. Lett. 4(2-3), 221-237 (1997). MR 1453056 · Zbl 0884.42016
[37] Miyachi, A.: On some estimates for the wave equation in \(L^{}\) p and \(H^{}\) p. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(2), 331-354 (1980). MR 586454 · Zbl 0437.35042
[38] Mockenhaupt, G., Seeger, A., Sogge, C.D.: Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. Math. (2) 136(1), 207-218 (1992). MR 1173929 · Zbl 0759.42016
[39] Mockenhaupt, G., Seeger, A., Sogge, C.D.: Local Smoothing of Fourier Integral Operators and Carleson-Sjölin Estimates. J. Amer. Math. Soc. 6(1), 65-130 (1993). MR 1168960 · Zbl 0776.58037
[40] Peral, J.C.: \(L^{}\) p estimates for the wave equation. J. Funct. Anal. 36(1), 114-145 (1980). MR 568979 · Zbl 0442.35017
[41] Phong, D.H., Stein, E.M.: Hilbert integrals, singular integrals, and Radon transforms. I. Acta Math. 157, 99-157 (1986) · Zbl 0622.42011 · doi:10.1007/BF02392592
[42] Seeger, A., Sogge, C.D., Stein, E.M.: Regularity properties of Fourier integral operators. Ann. Math. (2) 134(2), 231-251 (1991). MR 1127475 · Zbl 0754.58037
[43] Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699-715 (1987). MR 904948 · Zbl 0631.42010
[44] Sogge, C.D.: Propagation of singularities and maximal functions in the plane. Invent. Math. 104(2), 349-376 (1991). MR 1098614 · Zbl 0754.35004
[45] Sogge, C.D.: Lectures on Non-linear Wave Equations, 2nd ed. International Press, Boston (2008). MR 2455195 · Zbl 1165.35001
[46] Sogge, C.D.: Hangzhou Lectures on Eigenfunctions of the Laplacian. Annals of Mathematics Studies, vol. 188, Princeton University Press, Princeton (2014). MR 3186367 · Zbl 1312.58001
[47] Sogge, C.D., Xi, Y., Xu, H.: On instability of the Nikodym maximal function bounds over Riemannian manifolds. J. Geom. Anal. 28(3), 2886-2901 (2018) · Zbl 1440.42091 · doi:10.1007/s12220-017-9939-4
[48] Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30, Princeton University Press, Princeton (1970). MR 0290095 · Zbl 0207.13501
[49] Stein, E.M.: Maximal functions. I. Spherical means. Proc. Nat. Acad. Sci. U.S.A. 73(7), 2174-2175 (1976). MR 0420116 · Zbl 0332.42018
[50] Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton (1993), With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR 1232192 · Zbl 0821.42001
[51] Stein, E.M., Shakarchi, R.: Functional Analysis. Princeton Lectures in Analysis, vol. 4. Princeton University Press, Princeton (2011), Introduction to further topics in analysis. MR 2827930 · Zbl 1235.46001
[52] Tao, T.: The Bochner-Riesz conjecture implies the restriction conjecture. Duke Math. J. 96(2), 363-375 (1999). MR 1666558 · Zbl 0980.42006
[53] Tao, T.: Endpoint bilinear restriction theorems for the cone, and some sharp null form estimates. Math. Z. 238(2), 215-268 (2001). MR 1865417 · Zbl 0992.42004
[54] Trèves, F.: Introduction to Pseudodifferential and Fourier Integral Operators, vol. 2. Plenum Press, New York (1980). Fourier integral operators, The University Series in Mathematics. MR 597145 · Zbl 0453.47027
[55] Vega, L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Amer. Math. Soc. 102(4), 874-878 (1988). MR 934859 · Zbl 0654.42014
[56] Wisewell, L.: Kakeya sets of curves. Geom. Funct. Anal. 15(6), 1319-1362 (2005). MR 2221250 · Zbl 1117.43003
[57] Wolff, T.: Recent Work Connected with the Kakeya Problem. Prospects in Mathematics (Princeton, NJ, 1996). American Mathematical Society, Providence (1999), pp. 129-162. MR 1660476 · Zbl 0934.42014
[58] Wolff, T.: Local smoothing type estimates on \(L^{}\) p for large p. Geom. Funct. Anal. 10(5), 1237-1288 (2000). MR 1800068 · Zbl 0972.42005
[59] Wolff, T.: A sharp bilinear cone restriction estimate. Ann. Math. (2) 153(3), 661-698 (2001). MR 1836285 · Zbl 1125.42302
[60] Zelditch, S.: Eigenfunctions of the Laplacian on a Riemannian Manifold, CBMS Regional Conference Series in Mathematics, vol. 125. Published for the Conference Board of the Mathematical Sciences, Washington. American Mathematical Society, Providence (2017) · Zbl 1408.58001
[61] Tao, T., Vargas, A.: A bilinear approach to cone multipliers. II. Applications. Geom. Funct. Anal. 10(1), 216-258 (2000). MR 1748921 · Zbl 0949.42013
[62] Sogge, C.D.: Fourier Integrals in Classical Analysis, 2nd edn., Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2017) · Zbl 1361.35005 · doi:10.1017/9781316341186
[63] Maslov, V.P.: Theory of Perturbations and Asymptotic Methods. Moskov. Gos. Univ., Moscow (1965). Russian
[64] Kato, T.: On the Cauchy Problem for the (Generalized) Korteweg-de Vries Equation. Studies in Applied Mathematics. Adv. Math. Suppl. Stud., vol. 8. Academic Press, New York (1983), pp. 93-128. MR 759907 · Zbl 0549.34001
[65] Hickman, J., Iliopoulou, M.: Sharp \(L^{}\) p estimates for oscillatory integral operators of arbitrary signature. To appear. arxiv.org/abs/2006.01316 · Zbl 1430.42016
[66] Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Studia Math. 44, 287-299 (1972) (errata insert). Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, III. MR 0361607 · Zbl 0215.18303
[67] Bourgain, J., Demeter, C.: Decouplings for curves and hypersurfaces with nonzero Gaussian curvature. J. Anal. Math. 133, 279-311 (2017). MR 3736493 · Zbl 1384.42016
[68] Bourgain, J.: \(L^{}\) p-estimates for oscillatory integrals in several variables. Geom. Funct. Anal. 1(4), 321-374 (1991). MR 1132294 · Zbl 0756.42013
[69] Beltran, D., Hickman, J., Sogge, C.D.: Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds. Anal. PDE 13(2), 403-433 (2020) · Zbl 1436.35340 · doi:10.2140/apde.2020.13.403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.