×

Finite symmetric integral tensor categories with the Chevalley property with an appendix by Kevin Coulembier and Pavel Etingof. (English) Zbl 1487.18017

The paper under review continues the study of the problem of classifying finite symmetric tensor categories \(\mathcal C\) over an algebraically closed field \(k\) of characteristic \(p>0\). More precisely, the authors classify symmetric integral tensor categories \(\mathcal C\) over \(k\) which have the Chevalley property (i.e., categories in which the tensor product of every two simple objects is semisimple). In the main result of the paper (Theorem 1.1) the authors show that every finite symmetric integral tensor category \(\mathcal C\) with the Chevalley property over an algebraically closed field \(k\) of characteristic \(p>2\) admits a symmetric fiber functor to the category of supervector spaces. This result implies a conjecture giving by Ostrik, and as a Corollary the authors obtain that every finite symmetric unipotent tensor category \(\mathcal C\) over an algebraically closed field \(k\) of characteristic \(p>2\) admits a symmetric fiber functor to the category of vector spaces. Moreover, the authors classify finite dimensional triangular quasi-Hopf algebras with the Chevalley property over an algebraically closed field \(k\) of characteristic \(p>2\) (Theorem 3.1) and certain finite dimensional triangular Hopf algebras with the Chevalley property (Section 4). The paper finishes with an appendix by Coulembier and Etingof which gives another proof of the above classifications results and shows that the maximal Tannakian and super-Tannakian subcategory of a symmetric tensor category over a field of characteristic \(p\neq 2\) is always a Serre subcategory.

MSC:

18M15 Braided monoidal categories and ribbon categories
16T05 Hopf algebras and their applications

References:

[1] Abe, E.Hopf Algebras. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. Cambridge Tracts in Mathematics, 74. Cambridge-New York: Cambridge University Press, 1980, xii+284 pp. · Zbl 0476.16008
[2] Andruskiewitsch, N.Etingof, PGelaki, STriangular Hopf algebras with the Chevalley property. Michigan J. Math.49 (2001): 277-298 · Zbl 1016.16029
[3] Bezrukavnikov, R.“On tensor categories attached to cells in affine Weyl groups. Representation theory of algebraic groups and quantum groups.” Adv. Stud. Pure Math.40, Mathematical Society of Japan (2004): 69-90. · Zbl 1078.20044
[4] Coulembier, K.“Tannakian categories in positive characteristic.” Preprint, arXiv:1812.02452. · Zbl 1458.18008
[5] Drinfeld, V. “Quasi-Hopf algebras. (Russian) Algebra i Analiz1 (1989), no. 6, 114-148; translation in Leningrad.” Math. J.1, no. 6 (1990): 1419-1457. · Zbl 0718.16033
[6] Demazure, M. and Gabriel, P.Groupes Algébriques, tome I: Géométrie algébrique, généralités, groupes commutatifs. (French) Avec un appendice Corps de classes local par Michiel Hazewinkel. Masson & Cie, Éditeur, Paris. Amsterdam: North-Holland Publishing Co., 1970. · Zbl 0203.23401
[7] Etingof, P. “Koszul duality and the PBW theorem in symmetric tensor categories in positive characteristic.” Adv. Math.327: 128-160, 2018. · Zbl 1440.18030
[8] Etingof, P. and Gelaki, S. “Finite-dimensional quasi-Hopf algebras with radical of codimension 2.” Math. Res. Lett.11 (2004): 685-696. · Zbl 1080.16041
[9] Etingof, P. and Gelaki, S. “Invariant Hopf 2-cocycles for affine algebraic groups.” Internat. Math. Res. Notices (2017): preprint arXiv:1707.08672. · Zbl 1480.20113
[10] Etingof, P. and Gelaki, S. “Quasisymmetric and unipotent tensor categories.” Math. Res. Lett.15, no. 5 (2008): 857-866. · Zbl 1168.18003
[11] Etingof, P. and Gelaki, S. “The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field.” Internat. Math. Res. Notices5 (2000): 223-234. · Zbl 0957.16029
[12] Etingof, P. and Ostrik, V. “Finite tensor categories.” Moscow Math. J.4, no. 3 (2004): 627-654. · Zbl 1077.18005
[13] Etingof, P., Harman, N. and Ostrik, V.“\(p\)-Adic dimensions in symmetric tensor categories in characteristic \(p\).” Quantum Topology9, no. 1 (2018): 119-140. · Zbl 1390.18016
[14] Etingof, P., Ostrik, V. and Venkatesh, S.“Computations in symmetric fusion categories in characteristic \(p\).” Internat. Math. Res. Notices2 (2017): 468-489. · Zbl 1405.18011
[15] Etingof, P., Gelaki, S., Nikshych, D. and Ostrik, V.Tensor Categories. AMS Mathematical Surveys and Monographs 205 (2015), 362 pp. · Zbl 1365.18001
[16] Friedlander, E. and Negron, C.“Cohomology for Drinfeld doubles of some infinitesimal group schemes.” Preprint arXiv:1709.09217. · Zbl 1477.20089
[17] Gelaki, S. “Module categories over affine group schemes.” Quantum Topology6, no. 1 (2015):-37. · Zbl 1338.14018
[18] Guillot, P. “Examples of Sweedler cohomology in positive characteristic.” Comm. Algebra43, no. 5 (2015): 2174-2200. · Zbl 1316.81056
[19] Etingof, P., Golberg, O., Hensel, S., Liu, T., Schwendner, A., Vaintrob, D., and Yudovina, E.Introduction to Representation Theory. With historical interludes by Slava Gerovitch. Student Mathematical Library 59. Providence, RI: American Mathematical Society, 2011, viii+228 pp. · Zbl 1242.20001
[20] Jantzen, J.Representations of Algebraic Groups, 2nd ed. Mathematical Surveys and Monographs107. Providence, RI: AMS, 2003, xiv+576 pp.
[21] AMasuoka. “Hopf algebraic techniques applied to super algebraic groups.” Proceedings of Algebra Symposium (Hiroshima, 2013), pp. 48-66, Mathematical Society of, 2013.
[22] Montgomery, S. “Hopf algebras and their actions on rings.” CBMS Regional Conf. Ser. in Math.82, (1993): 238. · Zbl 0793.16029
[23] Ng, S-H. and Wang, X.“Hopf algebras of prime dimension in positive characteristic.” Preprint arXiv:1810. 00476. · Zbl 1431.16033
[24] Nguyen, V. C., Wang, L. and Wang, X.“Classification of connected Hopf algebras of dimension \({p}^3\) I.” J. Algebra424 (2015): 473-505. · Zbl 1312.16032
[25] Ostrik, V.“On symmetric fusion categories in positive characteristic.” Preprint arXiv:1503.01492v1. · Zbl 1440.18032
[26] Radford, D. E. “Minimal quasitriangular Hopf algebras.” J. Algebra157, (1993): 285-315. · Zbl 0787.16028
[27] Radford, D. E. “The structure of Hopf algebras with a projection.” J. Algebra92, (1985): 322-347. · Zbl 0549.16003
[28] Sweedler, M.Hopf Algebras. New York: Benjamin Press, 1968.
[29] Sweedler, M. “Cohomology of algebras over Hopf algebra.” Trans. Amer. Math. Soc.127 (1968). · Zbl 0164.03704
[30] Venkatesh, S. “Hilbert basis theorem and finite generation of invariants in symmetric fusion categories in positive characteristic.” Internat. Math. Res. Notices16 (2016): 5106-5133. · Zbl 1404.18019
[31] Wang, X.“Connected Hopf algebras of dimension \({p}^2\).” J. Algebra391 (2013): 93-113. · Zbl 1301.16036
[32] Wang, X. “Isomorphism classes of finite dimensional connected Hopf algebras in positive characteristic.” Adv. Math.281 (2015): 594-623. · Zbl 1325.16030
[33] Waterhouse, W.Introduction to Affine Group Schemes.Graduate Texts in Mathematics66. New York-Berlin: Springer, 1979, xi+164 pp. · Zbl 0442.14017
[34] Weibel, C. “An introduction to homological algebra.” Cambridge Stud. Adv. Math.38, (1995): 450. · Zbl 0834.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.