×

Connected Hopf algebras of dimension \(p^2\). (English) Zbl 1301.16036

The main aim of the paper under review is to classify all connected Hopf algebras of dimension \(p^2\) over an algebraically closed field \(\mathbf k\) of positive characteristic \(p\). Let \(H\) be such a Hopf algebra with the primitive space \(P(H)\). According to Proposition 2.2, \(\dim P(H)\leq 2\). The author considers both cases separately.
He proves in Theorem 7.4 that if \(\dim P(H)=2\), then \(H\) is isomorphic to one of the following: (1) \(\mathbf k[x,y]/(x^p,y^p)\); (2) \(\mathbf k[x,y]/(x^p-x,y^p)\); (3) \(\mathbf k[x,y]/(x^p-y,y^p)\); (4) \(\mathbf k[x,y]/(x^p-x,y^p-y)\); (5) \(\mathbf k[x,y]/([x,y]-y,x^p-x,y^p)\), where \(x\) and \(y\) are primitive.
If \(\dim P(H)=1\), then \(H\) is isomorphic to one of the following: (6) \(\mathbf k[x,y]/(x^p,y^p)\); (7) \(\mathbf k[x,y]/(x^p,y^p-x)\); (8) \(\mathbf k[x,y]/(x^p-x,y^p-y)\), where the coalgebra structure is given by \(\Delta(x)=x\otimes 1+1\otimes x\) and \(\Delta(y)=y\otimes 1+1\otimes y+\sum_{i=1}^{p-1}\frac{(p-1)!}{i!\cdot(p-i)!}x^i\otimes x^{p-i}\).
Finally, the author classifies all local Hopf algebras of dimension \(p^2\) over \(\mathbf k\) (Corollary 7.5).

MSC:

16T05 Hopf algebras and their applications
17B35 Universal enveloping (super)algebras
16S30 Universal enveloping algebras of Lie algebras

References:

[1] Andruskiewitsch, N.; Schneider, H.-J., Finite quantum groups and Cartan matrices, Adv. Math., 154, 1-45 (2000) · Zbl 1007.16027
[2] Andruskiewitsch, N.; Schneider, H.-J., Pointed Hopf algebras, (Montgomery, S.; Schneider, H. J., New Directions in Hopf Algebras (2002), Cambridge University Press: Cambridge University Press Cambridge), 1-68 · Zbl 1011.16025
[3] Demazure, M.; Grothendieck, A., Schémas en groupes I-III (SGA3), Lecture Notes in Math., vol. 151-153 (1970), Springer-Verlag
[4] Félix, Y.; Halperin, S.; Thomas, J. C., Rational Homotopy Theory, Grad. Texts in Math., vol. 205 (2001), Springer-Verlag · Zbl 0961.55002
[5] Henderson, G. D., Low-dimensional cocommutative connected Hopf algebras, J. Pure Appl. Algebra, 102, 173-193 (1995) · Zbl 0833.57022
[6] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math., vol. 9 (1980), Springer-Verlag · Zbl 0447.17002
[7] Isaacs, I. M., Algebra: A Graduate Course (1994), Brooks/Cole Publishing: Brooks/Cole Publishing Pacific Grove · Zbl 0805.00001
[8] Jacobson, N., Lie Algebras (1979), Dover Publications Inc.: Dover Publications Inc. New York · JFM 61.1044.02
[9] Montgomery, S., Hopf Algebras and Their Actions on Rings, CBMS Reg. Conf. Ser. Math., vol. 82 (1993), Amer. Math. Soc. · Zbl 0804.16041
[10] Quillen, D., The spectrum of an equivalent cohomology ring: I, Ann. of Math., 94, 549-572 (1971) · Zbl 0247.57013
[11] Ştefan, D.; Van Oystaeyen, F., Hochschild cohomology and the coradical filtration of pointed coalgebras: applications, J. Algebra, 210, 535-556 (1998) · Zbl 0918.16030
[12] Sweedler, M. E., Hopf Algebras (1969), Benjamin: Benjamin New York · Zbl 0194.32901
[13] Singer, W. M., Extension theory for connected Hopf algebras, J. Algebra, 21, 1-16 (1972) · Zbl 0269.16011
[14] Wang, D. G.; Zhang, J. J.; Zhuang, G., Lower bounds of Growth of Hopf algebras (2011)
[15] Waterhouse, W. C., Introduction to Affine Group Schemes, Grad. Texts in Math., vol. 66 (1979), Springer-Verlag · Zbl 0442.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.