×

Symmetry and monotonicity of a nonlinear Schrödinger equation involving the fractional Laplacian. (English) Zbl 1479.35279

Summary: In this paper, we consider a nonlinear Schrödinger equation involving the fractional Laplacian with Dirichlet condition: \[\begin{cases} (-\Delta )^{\frac{\alpha }{2}}u+A(x)u=f(x,u,\nabla u) \text{ in } \Omega ,\\ u>0\text{ in } \Omega,\quad u\equiv 0 \text{ in } \mathbb{R}^n\setminus \Omega , \end{cases}\] where \(\Omega\) is a domain (bounded or unbounded) in \(\mathbb{R}^n\) which is convex in \(x_1\)-direction. By using some ideas of maximum principle and the direct moving plane method, we prove that the solutions are strictly increasing in \(x_1\)-direction in the left half domain of \(\Omega \). Symmetry of some solutions are also proved. Meanwhile, we obtain a Liouville type theorem on the half space \(\mathbb{R}^n_+\).

MSC:

35J10 Schrödinger operator, Schrödinger equation
35Q55 NLS equations (nonlinear Schrödinger equations)
35R11 Fractional partial differential equations
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
Full Text: DOI

References:

[1] Abatangelo, N., Valdinoci, E.: Getting acquainted with the fractional laplacian (2017), preprint · Zbl 1432.35216
[2] Alves, CO; Figueiredo, GM; Pimenta, MTO, Existence and profile of ground-state solutions to a 1-laplacian problem in R-N, Bullet. Brazil. Math. Soc., 51, 3, 863-886 (2020) · Zbl 1448.35253 · doi:10.1007/s00574-019-00179-4
[3] Azzollini, A.; D’Avenia, P.; Pomponio, A., On the SchrödingerCMaxwell equations under the effect of a general nonlinear term, Annal. De Linstitut Henri Poincare, 27, 2, 779-791 (2010) · Zbl 1187.35231 · doi:10.1016/j.anihpc.2009.11.012
[4] Benhassine, A., Fractional schrödinger equations with new conditions, Electron. J. Differ. Equ., 2018, 5, 1-12 (2018) · Zbl 1378.35320
[5] Caffarelli, L.; Silvestre, L., Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., 62, 5, 597-638 (2009) · Zbl 1170.45006 · doi:10.1002/cpa.20274
[6] Cao, L., Wang, X., Dai, Z.: Radial Symmetry and Monotonicity of Solutions to a System Involving Fractional p-Laplacian in a Ball. Adv. Math. Phys. pp. Art. ID 1565,731, 6 (2018) · Zbl 1408.35210
[7] Chen, W., Problems with more general operators and more general nonlinearities, Adv. Math., 308, 404-437 (2017) · Zbl 1362.35320 · doi:10.1016/j.aim.2016.11.038
[8] Chen, W.; Fang, Y.; Yang, R., Liouville theorems involving the fractional laplacian on a half space, Adv. Math., 274, 2, 167-198 (2015) · Zbl 1372.35332 · doi:10.1016/j.aim.2014.12.013
[9] Chen, W.; Li, C., Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335, 735-758 (2018) · Zbl 1395.35055 · doi:10.1016/j.aim.2018.07.016
[10] Chen, W.; Li, C.; Li, Y., A direct method of moving planes for the fractional laplacian, Adv. Math., 308, 404-437 (2017) · Zbl 1362.35320 · doi:10.1016/j.aim.2016.11.038
[11] Chen, W.; Li, Y.; Ma, P., The Fractional Laplacian (2017), Singapore: World Scientific Publishing Co., Singapore
[12] Chen, W.; Zhu, J., Indefinite fractional elliptic problem and liouville theorems, J. Differ. Equ., 260, 5, 4758-4785 (2016) · Zbl 1336.35089 · doi:10.1016/j.jde.2015.11.029
[13] Cheng, T.; Cheng, T.; Cheng, T.; Cheng, T.; Cheng, T., Monotonicity and symmetry of solutions to fractional Laplacian equation, Dis. Continuous Dyn. Syst., 37, 7, 3587-3599 (2017) · Zbl 1366.35247 · doi:10.3934/dcds.2017154
[14] Cheng, T., Huang, G., Li, C.: The maximum principles for fractional laplacian equations and their applications. Commun. Contemp. Math. (2016) · Zbl 1373.35330
[15] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear schrödinger equation with the fractional laplacian, Proc. Royal Soc. Edinburgh, 142, 6, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[16] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic schrödinger equation with a bounded potential, J. Funct. Anal., 69, 3, 397-408 (1986) · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[17] Garofalo, N.: Fractional thoughts (2017), preprint · Zbl 1423.35397
[18] Ghoussoub, N.; Robert, F., The hardyCschrödinger operator with interior singularity: the remaining cases, Calculus Variat. Partial Differ. Equ., 56, 5, 149 (2017) · Zbl 1384.35012 · doi:10.1007/s00526-017-1238-1
[19] Guliyev, VS; Guliyev, RV; Omarova, MN; Ragusa, MA, Schrodinger type operators on local generalized Morrey spaces related to certain nonnegative potentials, Dis. Continuous Dyn. Syst. Ser. B, 25, 2, 671-690 (2020) · Zbl 1428.42020
[20] Joo, M.D., Ferraz, D.: Concentration-compactness at the mountain pass level for nonlocal schrödinger equations (2016)
[21] Li, C.; Wu, Z., Acta Math. Sci. Ser., 38, 5, 1567-1582 (2018) · Zbl 1438.35082 · doi:10.1016/S0252-9602(18)30832-4
[22] Li, C.; Wu, Z.; Xu, H., Bocher theorems and applications Proceedings, Natl. Acad. Sci. USA, 115, 27, 6976-6979 (2018) · Zbl 1440.35343 · doi:10.1073/pnas.1804225115
[23] Li, Y., Remark on some conformally invariant integral equations: the method of moving spheres, J. Europ. Math. Soc., 2, 2, 153-180 (2004) · Zbl 1075.45006 · doi:10.4171/JEMS/6
[24] Luo, H., Tang, X., Li, S.: Multiple solutions of nonlinear schrödinger equations with the fractional p-laplacian. Taiwanese J. Math. 21(5),(2017) · Zbl 1390.35086
[25] Ma, L.; Chen, D., Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 342, 2, 943-949 (2008) · Zbl 1140.45004 · doi:10.1016/j.jmaa.2007.12.064
[26] Nezza, ED; Palatucci, G.; Valdinoci, E., Hitchhikerös guide to the fractional sobolev spaces, Bullet. Des. Sci. Math., 136, 5, 521-573 (2011) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[27] Pino, MD; Felmer, PL, Local mountain passes for semilinear elliptic problems in unbounded domains, Calculus of Variat. Partial Differ. Equ., 4, 2, 121-137 (1996) · Zbl 0844.35032 · doi:10.1007/BF01189950
[28] Rabinowitz, Paul H., On a class of nonlinear schrödinger equations, Z. angew Math. Phys., 43, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[29] Secchi, S., Ground state solutions for nonlinear fractional schrödinger equations in rn, J. Math. Phys., 54, 3, 56108-305 (2013) · Zbl 1281.81034 · doi:10.1063/1.4793990
[30] Secchi, S.: On fractional schrödinger equations in Rn without the ambrosetti-rabinowitz condition. Topol. Methods Nonlinear Anal. (2014)
[31] Wang, Ying; Wang, J., The method of moving planes for integral equation in an extremal case, J. Partial Differ. Equ., 3, 246-254 (2016) · Zbl 1374.45006
[32] Wang, X.; Zeng, B., On concentration of positive bound states of nonlinear schrödinger equations with competing potential functions, Commun. Math. Phys., 153, 2, 229-244 (1993) · Zbl 0795.35118 · doi:10.1007/BF02096642
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.