×

The gamma filtrations for the spin groups. (English) Zbl 1478.22005

Summary: Let \(G\) be a compact Lie group and \(T\) its maximal torus. In this paper, we try to compute \(gr_{\gamma}^*(G/T)\) the graded ring associated with the gamma filtration of the complex \(K\)-theory \(K^0(G/T)\) for \(G=\operatorname{Spin}(n)\). In particular, we give a counterexample for a conjecture by Karpenko when \(G=\operatorname{Spin}(17)\).

MSC:

22E10 General properties and structure of complex Lie groups
14C15 (Equivariant) Chow groups and rings; motives
19D99 Higher algebraic \(K\)-theory
20G15 Linear algebraic groups over arbitrary fields
57T15 Homology and cohomology of homogeneous spaces of Lie groups

References:

[1] M. Atiyah, Characters and cohomology of finite groups, Publ. Math. IHES 9 (1961), 23-64.
[2] A. Borel, Sur l’homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342. · Zbl 0056.16401
[3] S. Garibaldi, A. Merkurjev and J. P. Serre, Cohomological invariants in Galois cohomology, University lecture series 28, Amer. Math. Soc., Providence, RI, 2003.
[4] S. Garibaldi and K. Zainoulline, The \(\gamma \)-filtration and the Rost invariant, J. Reine Angew. Math. 696 (2014), 225-244. · Zbl 1345.14022
[5] A. Grothendieck, La torsion homologique et les sections rationnelles, Sem. C. Chevalley, ENS 1958, expose 5, Secreatariat Math., IHP, Paris, 1958.
[6] M. Hazewinkel, Formal groups and applications, Pure and applied math. 78, Academic Press Inc, New York San Francisco London, 1978. · Zbl 0454.14020
[7] C. Junkins, The \(J\)-invariant and Tits algebras for groups of inner type \(E_6\), Manuscripta Math. 140 (2013), 249-261. · Zbl 1372.20043
[8] N. Karpenko, Chow groups of some generically twisted flag varieties, Ann. K-theory 2 (2017), 341-356. · Zbl 1362.14006
[9] N. Karpenko, On generic flag varieties of Spin(11) and Spin(12), Manuscripta Math. 157 (2018), 13-21. · Zbl 1499.14015
[10] N. Karpenko, A counter-example by Yagita, International J. Math. 31 (2020), 2050025. · Zbl 1440.20016
[11] A. Kono and M. Mimura, Cohomology operations and the Hopf algebra structures of the compact exceptional Lie groups \(E_7\) and \(E_8\), Proc. London Math. Soc. (3) 35 (1977), 345-358. · Zbl 0378.57014
[12] M. Levine and F. Morel, Cobordisme algébrique I, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 723-728. · Zbl 0991.19001
[13] A. Merkurjev, A. Neshitov and K. Zainoulline, Invariants of degree \(3\) and torsion in the Chow group of a versal flag, Compositio Math. 151 (2015), 1416-1432. · Zbl 1329.14017
[14] M. Mimura and T. Nishimoto, Hopf algebra structure of Morava K-theory of exceptional Lie groups, Recent progress in homotopy theory (Baltimore, MD, 2000), Contemp. Math. 293, Amer. Math. Soc., Providence, RI, 2002. · Zbl 1011.57011
[15] M. Mimura and H. Toda, Topology of Lie groups I and II, Translations of math. monographs 91, Amer. Math. Soc., Providence, RI, 1991.
[16] T. Nishimoto, Higher torsion in Morava K-theory of \(SO(m)\) and \(Spin(m)\), J. Math. Soc. Japan 53 (2001), 383-394. · Zbl 0983.55004
[17] I. Panin, On the algebraic \(K\)-theory of twisted flag varieties, K-theory 8 (1994), 541-585. · Zbl 0854.19002
[18] V. Petrov, Chow ring of generic maximal orthogonal Grassmannians, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 443 (2016), 147-150.
[19] V. Petrov, N. Semenov and K. Zainoulline, \(J\)-Invariant of linear algebraic groups, Ann. Scient. Ec. Norm. Sup. 41 (2008), 1023-1053. · Zbl 1206.14017
[20] D. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and applied math. 121, Academic Press Inc., Orland, 1986. · Zbl 0608.55001
[21] M. Rost, Some new results on Chowgroups of quadrics, preprint (1990).
[22] P. Sechin, Chern classes from Morava \(K\)-theories to \(p^n\)-typical oriented theories, , 2018. · Zbl 1408.14080
[23] P. Sechin and N. Semenov, Applications of the Morava \(K\)-theory to algebraic groups, , 2018. · Zbl 1408.14080
[24] N. Semenov, Motivic construction of cohomological invariant, Comment. Math. Helv. 91 (2016), 163-202. · Zbl 1344.14005
[25] N. Semenov and M. Zhykhovich, Integral motives, relative Krull-Schmidt principle, and Maranda-type theorems, Math. Ann. 363 (2015), 61-75. · Zbl 1350.14009
[26] H. Toda, On the cohomolgy ring of some homogeneous spaces, J. Math. Kyoto Univ. 15 (1975), 185-199. · Zbl 0323.57025
[27] B. Totaro, The torsion index of \(E_8\) and other groups, Duke Math. J. 129 (2005), 219-248. · Zbl 1093.57011
[28] B. Totaro, The torsion index of the spin groups, Duke Math. J. 129 (2005), 249-290. · Zbl 1094.57031
[29] B. Totaro, Group cohomology and algebraic cycles, Cambridge tracts in math. 204, Cambridge Univ. Press, Cambridge, 2014. · Zbl 1386.14088
[30] A. Vishik, On the Chow groups of quadratic Grassmannians, Doc. Math. 10 (2005), 111-130. · Zbl 1115.14002
[31] A. Vishik and N. Yagita, Algebraic cobordisms of a Pfister quadric, J. London Math. Soc. (2) 76 (2007), 586-604. · Zbl 1143.14016
[32] A. Vishik and K. Zainoulline, Motivic splitting lemma, Doc. Math. 13 (2008), 81-96. · Zbl 1132.14303
[33] V. Voevodsky, The Milnor conjecture, www.math.uiuc.edu/K-theory/0170 (1996).
[34] V. Voevodsky, Motivic cohomology with \(\mathbf{Z}/2\) coefficient, Publ. Math. IHES 98 (2003), 59-104. · Zbl 1057.14028
[35] V. Voevodsky, On motivic cohomology with \(\mathbf{Z}/l\)-coefficients, Ann. of Math. (2) 174 (2011), 401-438. · Zbl 1236.14026
[36] N. Yagita, Applications of Atiyah-Hirzebruch spectral sequence for motivic cobordism, Proc. London Math. Soc. (3) 90 (2005), 783-816. · Zbl 1086.55005
[37] N. Yagita, Algebraic \(BP\)-theory and norm varieties, Hokkaido Math. J. 41 (2012), 275-316. · Zbl 1321.14005
[38] N. Yagita, Note on the filtrations of the \(K\)-theory, Kodai Math. J. 38 (2015), 172-200. · Zbl 1335.19001
[39] N. Yagita, The gamma filtrations of \(K\)-theory of complete flag varieties, Kodai Math. J. 42 (2019), 130-159. · Zbl 1475.57048
[40] N. Yagita, Chow rings of versal complete flag varities, J. Math. Soc. Japan 72 (2020), 1-39. · Zbl 1507.57028
[41] K. Zainoulline, Twisted gamma filtration of a linear algebraic group, Compositio Math. 148 (2012), 1645-1654. · Zbl 1279.14011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.