×

The torsion index of the spin groups. (English) Zbl 1094.57031

This paper is concerned with the torsion index, \(t(G)\), of a connected compact Lie group \(G\), as introduced by A. Grothendieck in the Séminaire C. Chevalley (Exposé 5, 1958). In [ibid., 219–248 (2005; Zbl 1093.57011)], the author gives the value of \(t(E_8)\). Here, he computes the torsion index exactly for all the spin groups, the torsion index being now known for all simply connected compact Lie groups. The paper begins with applications of the torsion index to complex cobordism, Chow rings, cohomology of classifying spaces and the classification of \(G\)-torsors over fields. The author uses the symplectic groups to give a lower bound for the torsion index of spin groups. The final part of the proof is a tour de force, obtained by inspecting the first 330 digits of \(\sqrt{2}\), using a theorem of M. Bauer and M. A. Bennet [Ramanujan J. 6, 209–270 (2002; Zbl 1010.11020)].

MSC:

57T10 Homology and cohomology of Lie groups
Full Text: DOI

Online Encyclopedia of Integer Sequences:

Spin(2n+1) and Spin(2n+2) have torsion index 2^a(n).

References:

[1] M. Bauer and M. A. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation , Ramanujan J. 6 (2002), 209–270. MR 1908198 · Zbl 1010.11020 · doi:10.1023/A:1015779301077
[2] D. Benson and J. A. Wood, Integral invariants and cohomology of \(B\,\textrom\mathrm Spin(n)\) , Topology 34 (1995), 13–28. MR 1308487 · Zbl 0846.55013 · doi:10.1016/0040-9383(94)E0019-G
[3] P. Berthelot and A. Ogus, Notes on Crystalline Cohomology , Princeton Univ. Press, Princeton, 1978. MR 0491705 · Zbl 0383.14010
[4] A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes , Tohoku Math. J. (2) 13 (1961), 216–240. MR 0147579 · Zbl 0109.26101 · doi:10.2748/tmj/1178244298
[5] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion , Invent. Math. 21 (1973), 287–301. MR 0342522 · Zbl 0269.22010 · doi:10.1007/BF01418790
[6] M. Florence, Zéro-cycles de degré un sur les espaces homogènes , Int. Math. Res. Not. 2004 , no. 54, 2897–2914. MR 2097288 · Zbl 1092.14061 · doi:10.1155/S1073792804140750
[7] E. M. Friedlander, Maps between localized homogeneous spaces , Topology 16 (1977), 205–216. MR 0501047 · Zbl 0364.57015 · doi:10.1016/0040-9383(77)90001-5
[8] W. Fulton, Intersection Theory , Ergeb. Math. Grenzgeb. (3) 2 , Springer, Berlin, 1984. MR 0732620 · Zbl 0541.14005
[9] S. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological Invariants in Galois Cohomology , Univ. Lecture Ser. 28 , Amer. Math. Soc., Providence, 2003. MR 1999383 · Zbl 1159.12311
[10] A. Grothendieck, “La torsion homologique et les sections rationnelles” in Anneaux de Chow et applications , Séminaire C. Chevalley 1958 , 2nd year, Secrétariat math., Paris, exp. 5. MR 0110704 · Zbl 0901.14001
[11] N. Kitchloo, G. Laures, and W. S. Wilson, The Morava \(K\)-theory of spaces related to \(BO\) , Adv. Math. 189 (2004), 192–236. MR 2093483 · Zbl 1063.55002 · doi:10.1016/j.aim.2003.10.008
[12] A. Kono, On the integral cohomology of \(B\, \textrom\mathrm Spin(n)\) , J. Math. Kyoto Univ. 26 (1986), 333–337. MR 0857221 · Zbl 0617.55007
[13] A. Kono and N. Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups , Trans. Amer. Math. Soc. 339 (1993), 781–798. MR 1139493 JSTOR: · Zbl 0783.55007 · doi:10.2307/2154298
[14] R. Marlin, Anneaux de Chow des groupes algébriques \(\textrom\mathrm SU(n)\), \(\mathrm Sp(n)\), \(\textrom\mathrm SO(n)\), \(\textrom\mathrm Spin(n)\), \(G_2\), \(F_4\); torsion , C. R. Acad. Sci. Paris Sér. A. 279 (1974), 119–122. MR 0347820 · Zbl 0289.14001
[15] A. S. Merkurjev, Maximal indexes of Tits algebras , Doc. Math. 1 (1996), 229–243. MR 1405670 · Zbl 0854.20060
[16] M. Mimura and H. Toda, Topology of Lie Groups I, II , Transl. Math. Monogr. 91 , Amer. Math. Soc., Providence, 1991. MR 1122592 · Zbl 0757.57001
[17] F. Morel and V. Voevodsky, \(A^1\)-homotopy theory of schemes , Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143. MR 1813224 · Zbl 0983.14007 · doi:10.1007/BF02698831
[18] T. Nagell, The Diophantine equation \(x^2 + 7 = 2^n\) , Nordisk Mat. Tidskr. 30 (1948), 62–64.; Ark. Mat. 4 (1961), 185–187. MR 0130216
[19] R. Parimala, Homogeneous varieties—zero cycles of degree one versus rational points , preprint, 2004, http://www.math.uni-bielefeld.de/LAG/man/148.html · Zbl 1095.14018
[20] A. Pfister, Quadratische Formen in beliebigen Körpern , Invent. Math. 1 (1966), 116–132. MR 0200270 · Zbl 0142.27203 · doi:10.1007/BF01389724
[21] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197–212. MR 0290401 · Zbl 0225.55015 · doi:10.1007/BF01350050
[22] Z. Reichstein and B. Youssin, Splitting fields of \(G\)-varieties , Pacific J. Math. 200 (2001), 207–249. MR 1863413 · Zbl 1054.14063 · doi:10.2140/pjm.2001.200.207
[23] D. Ridout, The \(p\)-adic generalization of the Thue-Siegel-Roth theorem , Mathematika 5 (1958), 40–48. MR 0097382 · Zbl 0085.03501 · doi:10.1112/S0025579300001339
[24] J.-P. Serre, Cohomologie galoisienne: progrès et problèmes , Astérisque 227 (1995), 229–257., Séminaire Bourbaki 1993/94, exp. 783; also in Oeuvres, IV , Springer, Berlin, 443–471. MR 1321649; MR 1730973 · Zbl 0837.12003
[25] J. Tits, Sur les degrés des extensions de corps déployant les groupes algébriques simples , C. R. Acad. Sci. Paris Ser. I. Math. 315 (1992), 1131–1138. MR 1194504 · Zbl 0823.20042
[26] B. Totaro, “The Chow ring of a classifying space” in Algebraic \(K\)- Theory (Seattle, 1997) , Proc. Sympos. Pure Math. 67 , Amer. Math. Soc., Providence, 1999, 249–281. MR 1743244 · Zbl 0967.14005
[27] -, Splitting fields for \(E_8\)-torsors , Duke Math. J. 121 (2004), 425–455. MR 2040282 · Zbl 1048.11031 · doi:10.1215/S0012-7094-04-12132-3
[28] -, The torsion index of \(E_8\) and other groups , Duke Math. J. 129 (2005), 219–248. · Zbl 1093.57011 · doi:10.1215/S0012-7094-05-12922-2
[29] J. A. Wood, Spinor groups and algebraic coding theory , J. Combin. Theory Ser. A 51 (1989), 277–313. MR 1001269 · Zbl 0704.22010 · doi:10.1016/0097-3165(89)90053-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.