×

Universal enveloping Lie Rota-Baxter algebras of pre-Lie and post-Lie algebras. (English. Russian original) Zbl 1472.17047

Algebra Logic 58, No. 1, 1-14 (2019); translation from Algebra Logika 58, No. 1, 3-21 (2019).
Let \(L\) be a vector space over a field \(F\). Define a bilinear product \(xy\) in \(L\) such that for every \(x_1\), \(x_2\), \(x_3\in L\) one has \((x_1x_2)x_3 - x_1(x_2x_3) = (x_2x_1)x_3 - x_2(x_1x_3)\), then \(L\) is a pre-Lie algebra. The name comes from the fact that substituting the product in \(L\) by \([x,y]=xy-yx\) one gets a Lie algebra.
A post-Lie algebra is a vector space \(L\) together with two bilinear operations \([x,y]\) and \(xy\) such that \(L\) is a Lie algebra considered with \([x,y]\), and \((x_1x_2)x_3 - x_1(x_2x_3) -(x_2x_1)x_3 + x_2(x_1x_3) = [x_2,x_1]x_3\), and moreover \(x_1[x_2,x_3] = [x_1x_2,x_3]+ [x_2,x_1x_3]\), for every \(x_1\), \(x_2\), \(x_3\in L\).
The author studies Rota-Baxter algebras (that is algebras equipped with a Rota-Baxter operator). It is proved in the paper that the pre-Lie and the post-Lie algebras have universal enveloping Lie Rota-Baxter algebras, moreover the authors gives a direct construction of these universal enveloping algebras. Furthermore he proves that the variety of all Lie Rota-Baxter algebras is not a Schreier variety. Additionally he proves that the variety of Lie Rota-Baxter algebras and the one of the pre-Lie algebras are related as in the Poincaré-Birkhoff-Witt theorem (that is they form a PBW-pair). A similar result is proved for the varieties of all \(\lambda\)-Lie Rota-Baxter algebras and all post-Lie algebras.

MSC:

17B35 Universal enveloping (super)algebras
17B38 Yang-Baxter equations and Rota-Baxter operators
17B01 Identities, free Lie (super)algebras

References:

[1] Cayley, A., On the theory of analytic forms called trees, No. 3, 242-246 (1890), Cambridge
[2] E. B. Vinberg, “The theory of homogeneous convex cones,” Tr. Mosk. Mat. Obs., 12, 303-358 (1963). · Zbl 0138.43301
[3] J.-L. Koszul, “Domaines bornés homogènes et orbites de groupes de transformations affines,” Bull. Soc. Math. Fr., 89, 515-533 (1961). · Zbl 0144.34002 · doi:10.24033/bsmf.1572
[4] M. Gerstenhaber, “The cohomology structure of an associative ring, <Emphasis Type=”Italic”>Ann. Math. (2), 78, 267-288 (1963). · Zbl 0131.27302 · doi:10.2307/1970343
[5] C. Bai, Introduction to pre-Lie algebras, Preprint; http://einspem.upm.edu.my/equals8/CSS/pre-Lie.pdf. · Zbl 1496.17023
[6] D. Burde, “Left-symmetric algebras, or pre-Lie algebras in geometry and physics,” Cent. Eur. J. Math., 4, No. 3, 323-357 (2006). · Zbl 1151.17301 · doi:10.2478/s11533-006-0014-9
[7] D. Manchon, “A short survey on pre-Lie algebras,” in Noncommutative Geometry and Physics: Renormalization, Motives, Index Theory, A. Carey (ed.), EMS, Z¨urich (2011), pp. 89-102. · Zbl 1278.17001
[8] B. Vallette, “Homology of generalized partition posets,” J. Pure Appl. Alg., 208, No. 2, 699-725 (2007). · Zbl 1109.18002 · doi:10.1016/j.jpaa.2006.03.012
[9] J.-L. Loday, “Dialgebras,” in Dialgebras and Related Operads, Lect. Notes Math., J.-L. Loday et al. (eds.), 1763, Springer, Berlin (2001), pp. 7-66. · Zbl 0999.17002
[10] J.-L. Loday and M. Ronco, “Trialgebras and families of polytopes,” in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, Contemp. Math., 346, P. Goerss et al. (eds.), Am. Math. Soc., Providence, RI (2004), pp. 369-398. · Zbl 1065.18007
[11] D. Burde and K. Dekimpe, “Post-Lie algebra structures on pairs of Lie algebras,” J. Alg., 464, 226-245 (2016). · Zbl 1392.17010 · doi:10.1016/j.jalgebra.2016.05.026
[12] K. Ebrahimi-Fard, A. Lundervold, and H. Z. Munthe-Kaas, “On the Lie enveloping algebra of a post-Lie algebra,” J. Lie Theory, 25, No. 4, 1139-1165 (2015). · Zbl 1360.17015
[13] Yu Pan, Q. Liu, C. Bai, and L. Guo, “Post-Lie algebra structures on the Lie algebra sl(2<Emphasis Type=”Italic“>,C),” El. J. Lin. Alg., 23, 180-197 (2012). · Zbl 1295.17020
[14] C. Bai, O. Bellier, L. Guo, and X. Ni, “Splitting of operations, Manin products, and Rota-Baxter operators,” Int. Math. Res. Not., No. 3, 485-524 (2013). · Zbl 1314.18010
[15] V. Yu. Gubarev and P. S. Kolesnikov, “Embedding of dendriform algebras into Rota-Baxter algebras,” Cent. Eur. J. Math., 11, No. 2, 226-245 (2013). · Zbl 1262.18009
[16] I. Z. Golubchik and V. V. Sokolov, “Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras,” J. Nonlin. Math. Phys., 7, No. 2, 184-197 (2000). · Zbl 1119.37318 · doi:10.2991/jnmp.2000.7.2.5
[17] M. Aguiar, “Pre-Poisson algebras,” Lett. Math. Phys., 54, No. 4, 263-277 (2000). · Zbl 1032.17038 · doi:10.1023/A:1010818119040
[18] C. Bai, L. Guo, and X. Ni, “Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and Post-Lie algebras,” Comm. Math. Phys., 297, No. 2, 553-596 (2010). · Zbl 1206.17020 · doi:10.1007/s00220-010-0998-7
[19] G. Baxter, “An analytic problem whose solution follows from a simple algebraic identity,” Pac. J. Math., 10, 731-742 (1960). · Zbl 0095.12705 · doi:10.2140/pjm.1960.10.731
[20] A. A. Belavin and V. G. Drinfel’d, “Solutions of the classical Yang-Baxter equation for simple Lie algebras,” Funk. An. Prilozh., 16, No. 3, 1-29 (1982). · Zbl 0504.22016
[21] M. A. Semenov-Tyan-Shanskii, “What is a classical <Emphasis Type=”Italic“>r-matrix?” Funct. An. Appl., 17, No. 4, 17-33 (1983). · Zbl 0535.58031
[22] L. Guo, An Introduction to Rota-Baxter Algebra, Surv. Modern Math., 4, International Press, Somerville, MA (2012). · Zbl 1271.16001
[23] A. A. Mikhalev and I. P. Shestakov, “PBW-pairs of varieties of linear algebras,” Comm. Alg., 42, No. 2, 667-687 (2014). · Zbl 1300.17006 · doi:10.1080/00927872.2012.720867
[24] V. Yu. Gubarev, “Free Lie Rota-Baxter algebras,” Sib. Math. J., 57, No. 5, 809-818 (2016). · Zbl 1415.17005 · doi:10.1134/S0037446616050098
[25] V. Gubarev, “Universal enveloping Rota-Baxter algebras of preassociative and postassociative algebra,” J. Alg., 56, 298-328 (2018). · Zbl 1433.16027 · doi:10.1016/j.jalgebra.2018.09.017
[26] D. Segal, “Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt theorem,” J. Alg., 164, No. 3, 750-772 (1994). · Zbl 0831.17001 · doi:10.1006/jabr.1994.1088
[27] J.-M. Oudom and D. Guin, “On the Lie enveloping algebra of a pre-Lie algebra,” J. K-Theory, 2, No. 1, 147-167 (2008). · Zbl 1178.17011 · doi:10.1017/is008001011jkt037
[28] F. Chapoton and M. Livernet, “Pre-Lie algebras and the rooted trees operad,” Int. Math. Res. Not., No. 8, 395-408 (2001). · Zbl 1053.17001
[29] D. Kh. Kozybaev and U. U. Umirbaev, “The Magnus embedding for right-symmetric algebras,” Sib. Math. J., 45, No. 3, 488-494 (2004). · Zbl 1059.17001 · doi:10.1023/B:SIMJ.0000028613.67475.35
[30] D. Kh. Kozybaev, “On the structure of universal multiplicative algebras of free rightsymmetric algebras,” Vest. Kaz. Nat. Univ., 54 No. 3, 3-9 (2007).
[31] A. I. Shirshov, “On free Lie rings,” Mat. Sb., 45(87), No. 2, 113-122 (1958). · Zbl 0080.25503
[32] K. T. Chen, R. H. Fox, and R. C. Lyndon, “Free differential calculus. IV: The quotient groups of the lower central series,” Ann. Math., 68, No. 2, 81-95 (1958). · Zbl 0083.01403 · doi:10.2307/1970044
[33] F. Cartier and D. Foata, Problèmes Combinatoires de Commutation et Réarrangements, Lect. Notes Math., 85, Springer-Verlag, Berlin (1969). · Zbl 0186.30101 · doi:10.1007/BFb0079468
[34] M. Casals-Ruiz and I. Kazachkov, On Systems of Equations over Free Partially Commutative Groups, Mem. Am. Math. Soc., 999, Am. Math. Soc., Providence, RI (2011). · Zbl 1278.20057
[35] V. Diekert and G. Rozenberg (eds.), The Book of Traces, World Scientific, Singapore (1995).
[36] G. Duchamp and D. Krob, “The free partially commutative Lie algebra: Bases and ranks,” Adv. Math., 95, No. 1, 92-126 (1992). · Zbl 0763.17003 · doi:10.1016/0001-8708(92)90045-M
[37] A. J. Duncan, I. V. Kazachkov, and V. N. Remeslennikov, “Automorphisms of partially commutative groups. I: Linear subgroups,” Groups Geom. Dyn., 4, No. 4, 739-757 (2010). · Zbl 1254.20029 · doi:10.4171/GGD/103
[38] K. H. Kim, L. Makar-Limanov, J. Neggers, and F. W. Roush, “Graph algebras,” J. Alg., 64, 46-51 (1980). · Zbl 0431.05023 · doi:10.1016/0021-8693(80)90131-3
[39] E. N. Poroshenko, “Bases for partially commutative Lie algebras,” Algebra and Logic, 50, No. 5, 405-417 (2011). · Zbl 1290.17003 · doi:10.1007/s10469-011-9152-7
[40] V. Gubarev and P. Kolesnikov, “Gröbner-Shirshov basis of the universal enveloping Rota-Baxter algebra of a Lie algebra,” J. Lie Theory, 27, No. 3, 887-905 (2017). · Zbl 1430.17013
[41] J. Qiu and Yu. Chen, “Gröbner-Shirshov bases for Lie Ω-algebras and free Rota-Baxter Lie algebras,” J. Alg. Appl., 16, No. 2 (2017), Article ID 1750190. · Zbl 1384.16016
[42] C. Reutenauer, Free Lie Algebras, London Math. Soc. Monogr. New Ser., 7, Clarendon Press, Oxford (1993). · Zbl 0798.17001
[43] D. Kozybaev, L. Makar-Limanov, and U. Umirbaev, “The Freiheitssatz and the automorphisms of free right-symmetric algebras,” Asian-Eur. J. Math., 1, No. 2, 243-254 (2008). · Zbl 1168.17002 · doi:10.1142/S1793557108000230
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.