×

The Freiheitssatz and the automorphisms of free right-symmetric algebras. (English) Zbl 1168.17002

An algebra \(A\) over a field \(k\) is said to be right-symmetric in case \((x,y,z)=(x,z,y)\) holds for any \(x,y,z\in A\), where \((x,y,z)=(xy)z-x(yz)\) is the associator of the elements \(x,y,z\). Right-symmetric algebras are Lie-admissible and are strongly related to locally affine manifolds.
A number of interesting results for these algebras is proved in the paper under review:
1) The word problem for right-symmetric algebras with a single defining relation is decidable.
2) If a right symmetric algebra is generated by elements \(x_1,\ldots,x_n\) subject to just one defining relation involving \(x_n\), then the subalgebra generated by \(x_1,\ldots,x_{n-1}\) is free on these generators (Freiheitssatz).
3) Any two-generated subalgebra of a free right-symmetric algebra is free.
4) Any automorphism of the free right-symmetric algebra on two generators is tame.
Several open problems on subalgebras and automorphisms of free right-symmetric algebras are posed too.

MSC:

17A30 Nonassociative algebras satisfying other identities
17A36 Automorphisms, derivations, other operators (nonassociative rings and algebras)
17A50 Free nonassociative algebras
17D25 Lie-admissible algebras

References:

[1] DOI: 10.1090/S0002-9947-1969-0236208-5 · doi:10.1090/S0002-9947-1969-0236208-5
[2] DOI: 10.1007/978-94-011-2002-9 · doi:10.1007/978-94-011-2002-9
[3] Bokut’ L. A., Izv. Akad. Nauk SSSR, Ser. Mat. 36 pp 1173–
[4] Cohn P. M., Proc. London Math. Soc. 56 pp 618–
[5] Cohn P. M., Free rings and their relations (1985) · Zbl 0659.16001
[6] DOI: 10.1006/jabr.1999.8109 · Zbl 0954.17001 · doi:10.1006/jabr.1999.8109
[7] DOI: 10.4310/HHA.2002.v4.n2.a8 · Zbl 1029.17001 · doi:10.4310/HHA.2002.v4.n2.a8
[8] Jung H. W. E., J. reine angew. Math. 184 pp 161–
[9] Kh. Kozybaev D., Sibirsk. Mat. Zh. 45 pp 592–
[10] Kozybaev D. Kh., Vestnik KazNU 3 pp 3–
[11] Kukin G. P., Sibirsk. Mat. Zh. 18 pp 1194–
[12] van der Kulk W., Nieuw Archief voor Wiskunde 3 pp 33–
[13] Magnus W., J. Reine Angew. Math. 163 pp 141–
[14] Makar-Limanov L., Funksional. Anal. i Prilozhen 4 pp 107–
[15] DOI: 10.1016/0021-8693(85)90177-2 · Zbl 0558.16007 · doi:10.1016/0021-8693(85)90177-2
[16] Makar-Limanov L., Proc. Amer. Math. Soc. 135 12 pp 1969–
[17] Makar-Limanov L., J. Algebra
[18] Mikhalev A., CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC 19 (2004)
[19] Romanovskii N. S., Mat. Sb. (N.S.) 89 pp 93–
[20] Segal D., J. Algebra 12 pp 750– · Zbl 0533.22003
[21] DOI: 10.1090/S0894-0347-03-00440-5 · Zbl 1056.14085 · doi:10.1090/S0894-0347-03-00440-5
[22] Shirshov A. I., Sibirsk. Mat. Z. 3 pp 292–
[23] Umirbaev U. U., Algebra i Logika 32 pp 450–
[24] Umirbaev U. U., Algebra i Logika 33 pp 317–
[25] Umirbaev U. U., J. Reine Angew. Math. 605 pp 165–
[26] Vinberg E. B., Transl. Moscow Math. Soc. 12 pp 340–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.