×

From Hardy to Rellich inequalities on graphs. (English) Zbl 1464.35389

Summary: We show how to deduce Rellich inequalities from Hardy inequalities on infinite graphs. Specifically, the obtained Rellich inequality gives an upper bound on a function by the Laplacian of the function in terms of weighted norms. These weights involve the Hardy weight and a function which satisfies an eikonal inequality. The results are proven first for Laplacians and are extended to Schrödinger operators afterwards.

MSC:

35R02 PDEs on graphs and networks (ramified or polygonal spaces)
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
39A12 Discrete version of topics in analysis
26D15 Inequalities for sums, series and integrals
31C20 Discrete potential theory
35B09 Positive solutions to PDEs
35J10 Schrödinger operator, Schrödinger equation
58E35 Variational inequalities (global problems) in infinite-dimensional spaces

References:

[1] S.Agmon, Lectures on exponential decay of solutions of second‐order elliptic equations: bounds on eigenfunctions of \(N\)‐body Schrödinger operators, Mathematical Notes 29 (Princeton University Press, Princeton, NJ). · Zbl 0503.35001
[2] A. A.Balinsky, W.Desmond Evans and R. T.Lewis, The analysis and geometry of Hardy’s inequality. Universitext (Springer, Cham, 2015). · Zbl 1332.26005
[3] G.Barles, ‘On eikonal equations associated with Schrödinger operators with nonspherical radiation conditions’, Comm. Partial Differential Equations12 (1987) 263-283. · Zbl 0627.35023
[4] M.Bonnefont and S.Golénia, ‘Essential spectrum and Weyl asymptotics for discrete Laplacians’, Ann. Fac. Sci. Toulouse Math. (6)24 (2015) 563-624. · Zbl 1342.81142
[5] T.Ceccherini‐Silberstein, M.Coornaert and J.Dodziuk, ‘The surjectivity of the combinatorial Laplacian on infinite graphs’, Enseign. Math. (2)58 (2012) 125-130. · Zbl 1267.05182
[6] E. B.Davies and A. M.Hinz, ‘Explicit constants for Rellich inequalities in \(L_p ( \operatorname{\Omega} )\)’, Math. Z.227 (1998) 511-523. · Zbl 0903.58049
[7] B.Devyver, M.Fraas and Y.Pinchover, ‘Optimal Hardy weight for second‐order elliptic operator: an answer to a problem of Agmon’, J. Funct. Anal.266 (2014) 4422-4489. · Zbl 1298.47057
[8] J.Dodziuk and L.Karp, ‘Spectral and function theory for combinatorial Laplacians’, Geometry of random motion (Ithaca, N.Y., 1987), Contemporary Mathematics 73 (American Mathematical Society, Providence, RI, 1988) 25-40. · Zbl 0669.58031
[9] R. L.Frank, D.Lenz and D.Wingert, ‘Intrinsic metrics for non‐local symmetric Dirichlet forms and applications to spectral theory’, J. Funct. Anal.266 (2014) 4765-4808. · Zbl 1304.60081
[10] R. L.Frank and R.Seiringer, ‘Non‐linear ground state representations and sharp Hardy inequalities’, J. Funct. Anal.255 (2008) 3407-3430. · Zbl 1189.26031
[11] S.Golénia, ‘Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians’, J. Funct. Anal.266 (2014) 2662-2688. · Zbl 1292.35300
[12] G.Grillo, ‘Hardy and Rellich‐type inequalities for metrics defined by vector fields’, Potential Anal.18 (2003) 187-217. · Zbl 1032.46049
[13] S.Haeseler and M.Keller, ‘Generalized solutions and spectrum for Dirichlet forms on graphs’, Random walks, boundaries and spectra, Progress in Probability 64 (Birkhäuser, Basel, 2011) 181-199. · Zbl 1227.47023
[14] T.Kalmes, ‘A short remark on the surjectivity of the combinatorial Laplacian on infinite graphs’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.110 (2016) 695-698. · Zbl 1356.46004
[15] L.Kapitanski and A.Laptev, ‘On continuous and discrete Hardy inequalities’, J. Spectr. Theory6 (2016) 837-858. · Zbl 1368.35010
[16] M.Keller, Y.Pinchover and F.Pogorzelski, ‘An improved discrete Hardy inequality’, Amer. Math. Monthly125 (2018) 347-350. · Zbl 1392.26036
[17] M.Keller, Y.Pinchover and F.Pogorzelski, ‘Optimal Hardy inequalities for Schrödinger operators on graphs’, Comm. Math. Phys.358 (2018) 767-790. · Zbl 1390.26042
[18] M.Keller, Y.Pinchover and F.Pogorzelski, ‘Criticality theory for Schrödinger operators on graphs’, J. Spectr. Theory10 (2020) 73-114. · Zbl 1441.31006
[19] J.Koberstein and M.Schmidt, ‘A note on the surjectivity of operators on vector bundles over discrete spaces’, Arch. Math. (Basel)114 (2020) 313-329. · Zbl 1435.47042
[20] A.Kufner, L.Maligranda and L.‐E.Persson, ‘The prehistory of the Hardy inequality’, Amer. Math. Monthly113 (2006) 715-732. · Zbl 1153.01015
[21] D.Lenz, P.Stollmann and I.Veselić, ‘The Allegretto-Piepenbrink theorem for strongly local Dirichlet forms’, Doc. Math.14 (2009) 167-189. · Zbl 1172.35045
[22] F.Rellich, ‘Halbbeschränkte Differentialoperatoren höherer Ordnung’, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III (Erven P. Noordhoff N.V., Groningen, 1956) 243-250. · Zbl 0074.06703
[23] D. W.Robinson, ‘Hardy inequalities, Rellich inequalities and local Dirichlet forms’, J. Evol. Equ.18 (2018) 1521-1541. · Zbl 1401.31022
[24] N.Rosen, ‘Identical motion in quantum and classical mechanics’, Amer. J. Phys.32 (1964) 377-379.
[25] Y.Saito, ‘Schrödinger operators with a nonspherical radiation condition’, Pacific J. Math.126 (1987) 331-359. · Zbl 0657.35041
[26] K.Uchiyama, ‘Green’s functions for random walks on \(\mathbf{Z}^N\)’, Proc. London Math. Soc. (3)77 (1998) 215-240. · Zbl 0893.60045
[27] R. K.Wojciechowski, ‘Stochastic completeness of graphs’, PhD Thesis, City University of New York, New York, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.