×

An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation. (English) Zbl 1458.35432

Summary: A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B36 Pattern formations in context of PDEs
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
35B06 Symmetries, invariants, etc. in context of PDEs
92D25 Population dynamics (general)
35K58 Semilinear parabolic equations

References:

[1] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugen.7 (1937) 255-369. · JFM 63.1111.04
[2] A. N. Kolmogorov, I. Petrovskii and N. Piskunov, A study of the diffusion equation with increase in the amount of substance and its application to a biology problem, Bull. Univ. Moscow Ser. Int. A1 (1937) 1-16 [English translation in Selected Works of A. N. Kolmogorov, ed. V. M. Tikhomirov, Vol. 1 (Kluwer Academic Publishers, London, 1991), p. 242].
[3] Murray, J. D., Mathematical Biology. I. An Introduction, 3rd edn. (Springer-Verlag, New York, 2001).
[4] Paulau, P. V., Gomila, D., Lopez, C. and Hernandez-Garcia, E., Self-localized states in species competition, Phys. Rev. E89 (2014) 032724, arXiv:1402.6121 [nlin.PS].
[5] Hernandez-Garcia, E. and Lopez, C., Clustering, advection, and patterns in a model of population dynamics with neighborhood-dependent rates, Phys. Rev. E70 (2004) 016216.
[6] Okubo, A., Diffusion and Ecological Problems (Springer, New York, 1980). · Zbl 0422.92025
[7] F. Achleitner and C. Kuehn, On bounded positive stationary solutions for a nonlocal Fisher-KPP equation, preprint (2013), arXiv:math.AP/1307.3480. · Zbl 1303.35006
[8] Murray, J. D., Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, New York, 2003). · Zbl 1006.92002
[9] Meinhardt, H., Models of Biological Pattern Formation (Academic Press, London, 1982).
[10] Swanson, K. R., Rostomily, R. and Alvord, E. C. Jr., Predicting survival of patients with glioblastoma by combining a mathematical model and pre-operative MR imaging characteristics: A proof of principle, Br. J. Cancer98 (2008) 113-119.
[11] Wang, C., Rockhill, J. K., Mrugala, M., Peacock, D. L., Lai, A., Jusenius, K., Wardlaw, J. M., Cloughesy, T., Spence, A. M., Rockne, R., Alvord, E. C. Jr. and Swanson, K. R., Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Cancer Res.69(23) (2009) 9133-9140.
[12] Perez-Garcia, V. M., Calvo, G. F., Belmonte-Beitia, J., Diego, D. and Perez-Romasanta, L. A., Bright solitons in malignant gliomas, Phys. Rev. E84 (2011) 021921.
[13] Levchenko, E. A., Shapovalov, A. V. and Trifonov, A. Yu., Symmetries of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation, J. Math. Anal. Appl.395 (2012) 716-726. · Zbl 1248.45007
[14] Olver, P., Applications of Lie Groups to Differential Equations (Springer, New York, 1987).
[15] Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, , Vol. 81 (Springer, New York, 1989). · Zbl 0698.35001
[16] Maruvka, Y. E. and Shnerb, N. M., Nonlocal competition and logistic growth: Patterns, defects, and fronts, Phys. Rev. E73 (2006) 011903.
[17] Maruvka, Y. E. and Shnerb, N. M., Nonlocal competition and front propagation in branching-coalescence systems, Phys. Rev. E75 (2007) 042901.
[18] Volpert, V. and Petrovskii, S., Reaction-diffusion waves in biology, Phys. Life Rev.6 (2009) 267-310.
[19] Ming, M. and Yong, W., Remark on stability of traveling waves for nonlocal Fisher-KPP equations, Int. J. Numer. Anal. Model. B2(4) (2011) 379-401. · Zbl 1337.35075
[20] J. Belmonte-Beitia, G. F. Calvo and V. M. Perez-Garcia, Effective particle methods for Fisher-Kolmogorov equations: Theory and applications to brain tumor dynamics, preprint (2014), arXiv:q-bio.LQM/1401.2465. · Zbl 1510.92090
[21] Sanchez, A. and Bishop, A. R., Collective coordinates and length-scale in spatially inhomogeneous soliton-bearing equations, SIAM Rev.40(3) (1998) 579-615. · Zbl 0926.35135
[22] He, J. H., Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B20 (2006) 1141-1199. · Zbl 1102.34039
[23] Shakeel, M., Travelling wave solution of the Fisher-Kolmogorov equation with nonlinear diffusion, Appl. Math.4 (2013) 148-160.
[24] Maslov, V. P., Operational Methods (MIR Publications, Moscow, 1976). · Zbl 0449.47002
[25] Maslov, V. P., The Complex WKB Method for Nonlinear Equations. I. Linear Theory (Birkhauser Verlag, Basel, 1994). · Zbl 0811.35088
[26] V. V. Belov and S. Yu. Dobrokhotov, Semiclassical Maslov asymptotics with complex phases. I. General approach, Teor. Mat. Fiz.92 (1992) 215-254 (in Russian); Theoret. Math. Phys.92 (1992) 843-868.
[27] Bamba, K., Capozziello, S., Nojiri, S. and Odintsov, S. D., Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci.342 (2012) 155-228. · Zbl 1314.83037
[28] Bagrov, V. G., Belov, V. V. and Trifonov, A. Yu., Semiclassical trajectory-coherent approximation in quantum mechanics: I. High order corrections to multidimensional time-dependent equations of Schrödinger type, Ann. Phys. (N.Y.)246(2) (1996) 231-280. · Zbl 0874.35099
[29] da Cunha, J. A. R., Penna, A. L. A., Vainstein, M. H., Morgado, R. and Oliveira, F. A., Self-organization analysis for a nonlocal convective Fisher equation, Phys. Lett. A373 (2009) 661-667. · Zbl 1227.35058
[30] da Cunha, J. A. R., Penna, A. L. A. and Oliveira, F. A., Pattern formation and coexistence domains for a nonlocal population dynamics, Phys. Rev. E83 (2011) 015201.
[31] Ei, Sh.-I., The effect of nonlocal convection on reaction-diffusion equations, Hiroshima Math. J.17 (1987) 281-307. · Zbl 0636.35041
[32] Ohara, K., Ei, Sh.-I. and Nagai, T., Stationary solutions of a reaction-diffusion equation with a nonlocal convection, Hiroshima Math. J.22(2) (1992) 365-386. · Zbl 0815.35052
[33] Clerc, M. G., Trejo, M. and Tirapegui, E., Pattern formation and localized structures in reaction-diffusion systems with non-Fickian transport, Phys. Rev. Lett.97 (2006) 176102.
[34] E. A. Levchenko, A. Yu. Trifonov and A. V. Shapovalov, Estimate of accuracy of solution of the nonlocal Fisher-Kolomogorov-Petrovskii-Piskunov equation, Russian Phys. J.55(12) (2013) 1425-1433; Izv. Vyssh. Uchebn. Zaved. Fiz.55(12) (2012) 47-53 (in Russian). · Zbl 1298.35023
[35] A. Yu. Trifonov and A. V. Shapovalov, The one-dimensional Fisher-Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation, Russian Phys. J.52(9) (2009) 899-911; Izv. Vyssh. Uchebn. Zaved. Fiz.52(9) (2009) 14-23 (in Russian). · Zbl 1202.81071
[36] Belov, V. V., Trifonov, A. Yu. and Shapovalov, A. V., The trajectory-coherent approximation and the system of moments for the Hartree type equation, Int. J. Math. Math. Sci.32(6) (2002) 325-370. · Zbl 1136.81372
[37] Bateman, H. and Erdelyi, A., Higher Transcendental Functions, Vol. 2. (McGraw-Hill, London, 1953). · Zbl 0143.29202
[38] Levchenko, E. A., Trifonov, A. Yu. and Shapovalov, A. V., Pattern formation in terms of semiclassically limited distribution on lower dimensional manifolds for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation, J. Phys. A: Math. Theor.47 (2014) 025209. · Zbl 1305.45002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.