×

Spin-0 scalar particle interacts with scalar potential in the presence of magnetic field and quantum flux under the effects of KKT in 5D cosmic string spacetime. (English) Zbl 1456.81259

Summary: In this paper, we study a relativistic quantum dynamics of spin-0 scalar particle interacts with scalar potential in the presence of a uniform magnetic field and quantum flux in background of Kaluza-Klein theory (KKT). We solve Klein-Gordon equation in the considered framework and analyze the relativistic analogue of the Aharonov-Bohm effect for bound states. We show that the energy levels depend on the global parameters characterizing the spacetime, scalar potential and the magnetic field which break their degeneracy.

MSC:

81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
83E15 Kaluza-Klein and other higher-dimensional theories
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices

References:

[1] Thaller, B., The Dirac Equation (Springer, 1992). · Zbl 0765.47023
[2] Thomas, A. W. and Weise, W., Structure of the Nucleon (Wiley, 2001).
[3] Hwang, W. Y. P. and Wu, T. Y., Relativistic Quantum Mechanics and Quantum Fields (World Scientific Publishing, 1991). · Zbl 0942.81500
[4] Greiner, W., Relativistic Quantum Mechanics: Wave Equations (Springer-Verlag, 2000). · Zbl 0998.81503
[5] Lütfüoğlu, B. C., Kříž, J., Sedaghatnia, P. and Hassanabadi, H., Eur. Phys. J. Plus135, 691 (2020).
[6] Chen, H., Long, Z.-W., Yang, Y., Zhao, Z.-L. and Long, C.-Y., Int. J. Mod. Phys. A35, 2050107 (2020).
[7] Zare, S., Hassanabadi, H. and de Montigny, M., Gen. Relat. Gravit.52, 25 (2020). · Zbl 1439.83027
[8] Bragança, E. A. F., Vitória, R. L. L., Belich, H. and Bezerra de Mello, E. R., Eur. Phys. J. C80, 206 (2020).
[9] Bakke, K. and Furtado, C., Int. J. Mod. Phys. D19, 85 (2010). · Zbl 1187.83013
[10] Deng, L.-F., Long, C.-Y., Long, Z.-W. and Xu, T., Eur. Phys. J. Plus134, 355 (2019).
[11] Hosseinpour, M., Hassanabadi, H. and Andrade, F. M., Eur. Phys. J. C78, 93 (2018).
[12] de Montigny, M., Hosseinpour, M. and Hassanabadi, H., Int. J. Mod. Phys. A31, 1650191 (2016). · Zbl 1359.81119
[13] Hosseinpour, M., Hassanabadi, H. and de Montigny, M., Int. J. Geom. Methods Mod. Phys.15, 1850165 (2018). · Zbl 1398.81101
[14] Hosseini, M., Hassanabadi, H., Hassanabadi, S. and Sedaghatnia, P., Int. J. Geom. Methods Mod. Phys.16, 1950054 (2019). · Zbl 1426.83049
[15] Ahmed, F., EPL131, 30002 (2020).
[16] Kibble, T. W. B., J. Phys. A: Math. Gen.9, 1387 (1976). · Zbl 0333.57005
[17] Vilenkin, A., Phys. Rep.121, 263 (1985). · Zbl 0966.83541
[18] Hindmarsh, M., Prog. Theor. Phys. Suppl.190, 197 (2011).
[19] Vilenkin, A. and Shellard, E. P. S., Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, 1994). · Zbl 0978.83052
[20] Hindmarsh, M. and Kibble, T., Rep. Prog. Phys.58, 477 (1995).
[21] Vilenkin, A., Phys. Rev. Lett.46, 1169 (1988).
[22] Barriola, M. and Vilenkin, A., Phys. Rev. Lett.63, 341 (1989).
[23] Ainouy, M. A. and Clement, G., Class. Quantum Grav.13, 2635 (1996). · Zbl 0863.53069
[24] Kaluza, T., Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)K1, 966 (1921) [Int. J. Mod. Phys. D27, 1870001 (2018) (translation)].
[25] O. Klein, Mag. Phys.37, 895 (1926); Nature118, 516 (1927).
[26] Muta, T., An Introduction to Kaluza-Klein Theories, ed. Lee, H. C. (World Scientific Publishing, 1984).
[27] Bailin, D. and Love, A., Rep. Prog. Phys.50, 1087 (1987).
[28] de M. Carvalho, A. M., Satiro, C. and Moraes, F., EPL80, 46002 (2007).
[29] Satiro, C. and Moraes, F., Mod. Phys. Lett. A20, 2561 (2005).
[30] Satiro, C. and Moraes, F., Eur. Phys. J. E20, 173 (2006).
[31] Satiro, C. and Moraes, F., Eur. Phys. J. E25, 425 (2008).
[32] Bueno, M. J., Lemos de Melo, J., Furtado, C. and de M. Carvalho, A. M., Eur. Phys. J. Plus129, 201 (2014).
[33] Dantas, L., Furtado, C. and Netto, A. L. S., Phys. Lett. A379, 11 (2015). · Zbl 1303.81074
[34] da Silva, W. C. F. and Bakke, K., Eur. Phys. J. C79, 559 (2019).
[35] Bakke, K., Ribeiro, L. R., Furtado, C. and Nascimento, J. R., Phys. Rev. D79, 024008 (2009).
[36] Zare, S., Hassanabadi, H., Rampho, G. J. and Ikot, A. N., Eur. Phys. J. Plus135, 748 (2020).
[37] Mukai, H., Fernandes, P. R. G., de Oliveira, B. F. and Dias, G. S., Phys. Rev. E75, 061704 (2007).
[38] Moraes, F., Braz. J. Phys.30, 304 (2000).
[39] Bohm, A., Mostafazadeh, A., Koizumi, H., Niu, Q. and Zwanziger, J., The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts and Applications in Molecular and Condensed Matter Physics (Springer-Verlag, 2003). · Zbl 1039.81003
[40] de Assis, J. G., Furtado, C. and Bezerra, V. B., Phys. Rev. D62, 045003 (2000).
[41] Bakke, K., Nascimento, J. R. and Furtado, C., Phys. Rev. D78, 064012 (2008).
[42] Bakke, K. and Furtado, C., Phys. Lett. A375, 3956 (2011). · Zbl 1254.81051
[43] de Lima Ribeiro, C. A., Furtado, C. and Moraes, F., EPL62, 306 (2003).
[44] Eds. Peskin, M. and Tonomura, A., The Aharonov-Bohm Effect, , Vol. 340 (Springer, 1989).
[45] Bezerra, V. B., J. Math. Phys.30, 2895 (1989). · Zbl 0709.53534
[46] Aharonov, Y. and Bohm, D., Phys. Rev.115, 485 (1959). · Zbl 0099.43102
[47] Anacleto, M. A., Salako, I. G., Brito, F. A. and Passos, E., Phys. Rev. D92, 125010 (2015).
[48] Khalilov, V. R., Eur. Phys. J. C74, 2708 (2014).
[49] Coste, C., Lund, F. and Umeki, M., Phys. Rev. E60, 4908 (1999).
[50] Vitória, R. L. L. and Bakke, K., Int. J. Mod. Phys. D27, 1850005 (2018). · Zbl 1430.81034
[51] Ahmed, F., Adv. High Energy Phys.2020, 5691025 (2020). · Zbl 1434.81035
[52] Vitória, R. L. L. and Bakke, K., Eur. Phys. J. Plus133, 490 (2018).
[53] Vitória, R. L. L. and Bakke, K., Eur. Phys. J. C78, 175 (2018).
[54] Vitória, R. L. L. and Bakke, K., Gen. Relat. Gravit.48, 161 (2016). · Zbl 1370.83089
[55] Ahmed, F., Adv. High Energy Phys.2020, 4832010 (2020). · Zbl 1440.81030
[56] Ahmed, F., Chinese J. Phys.66, 587 (2020).
[57] Ahmed, F., Eur. Phys. J. Plus135, 588 (2020).
[58] Ahmed, F., Int. J. Mod. Phys. A35, 2050101 (2020).
[59] Ahmed, F., Mod. Phys. Lett. A35, 2050220 (2020).
[60] Ahmed, F., Int. J. Geom. Methods Mod. Phys.17, 2050138 (2020).
[61] Furtado, C., Moraes, F. and Bezerra, V. B., Phys. Rev. D59, 107504 (1999).
[62] Furtado, C., Bezerra, V. B. and Moraes, F., Mod. Phys. Lett. A15, 253 (2000).
[63] Leite, E. V. B., Belich, H. and Bakke, K., Adv. High Energy Phys.2015, 925846 (2015). · Zbl 1375.83053
[64] Leite, E. V. B., Belich, H. and Vitória, R. L. L., Adv. High Energy Phys.2019, 6740360 (2019). · Zbl 1434.81037
[65] Leite, E. V. B., Vitória, R. L. L. and Belich, H., Mod. Phys. A34, 1950319 (2019). · Zbl 1428.83018
[66] Ahmed, F., Eur. Phys. J. C80, 211 (2020).
[67] Ahmed, F., Adv. High Energy Phys.2020, 8107025 (2020). · Zbl 1440.81031
[68] Carvalho, J., de M. Carvalho, A. M., Cavalcante, E. and Furtado, C., Eur. Phys. J. C76, 365 (2016).
[69] E. V. B. Leite, H. Belich and R. L. L. Vitoria. https://doi.org/10.1007/s13538-020-00785-4
[70] German, G., Class. Quantum Grav.2, 455 (1985). · Zbl 0575.53055
[71] Macias, A., German, G. and Obregon, O., Proc. Int. Conf. Aspects of General Relativity and Mathematical Physics, in honour of Prof. Jerzy Plebanski on his 65th birthday1993, Mexico, , pp. 192-197.
[72] Volovich, I. V. and Katanaev, M. O., Theor. Math. Phys.66, 53 (1986). · Zbl 0624.53048
[73] Neville, D. E., Phys. Rev. D33, 363 (1986).
[74] Kalinowski, M. W., New Developments in Mathematical Physics, eds. Mitter, H.et al., (Springer-Verlag, 1981), pp. 641-652.
[75] Oh, C. H. and Singh, K., Class. Quantum Grav.6, 1053 (1989).
[76] Shankar, K. H. and Wali, K. C., Mod. Phys. Lett. A25, 2121 (2010). · Zbl 1193.83046
[77] Wu, Y.-S. and Zee, A., J. Math. Phys.25, 2696 (1984).
[78] Macias, A. and Dehnen, H., Class. Quantum Grav.8, 203 (1991). · Zbl 0715.53056
[79] Ichinose, S., Phys. Rev. D66, 104015 (2002).
[80] Carroll, S. M. and Tam, H., Phys. Rev. D78, 044047 (2008).
[81] Gomes, M., Nascimento, J. R., Petrov, A. Y. and da Silva, A. J., Phys. Rev. D81, 045018 (2010).
[82] Scarpelli, A. P. B., Mariz, T., Nascimento, J. R. and Petrov, A. Y., Eur. Phys. J. C73, 2526 (2013).
[83] Bakke, K., Petrov, A. Y. and Furtado, C., Ann. Phys. (N. Y.)327, 2946 (2012). · Zbl 1260.81110
[84] Katanaev, M. O. and Volovich, I. V., Ann. Phys. (N. Y.)216, 1 (1992). · Zbl 0875.53018
[85] Furtado, C., da Cunha, B. C. G., Moraes, F., de Mello, E. R. B. and Bezerra, V. B., Phys. Lett. A195, 90 (1994).
[86] de A. Marques, G., Furtado, C., Bezerra, V. B. and Moraes, F., J. Phys. A: Math Theor.34, 5945 (2001). · Zbl 1126.82337
[87] Furtado, C. and Moraes, F., J. Phys. A: Math. Theor.33, 5513 (2000). · Zbl 1004.81011
[88] Bahar, M. K. and Yasuk, F., Adv. High Energy Phys.2013, 814985 (2013). · Zbl 1328.81098
[89] Alexandrou, C., de Forcrand, P. and Jahn, O., Nucl. Phys. B (Proc. Suppl.)119, 667 (2003).
[90] Wang, Z., Long, Z., Long, C. and Wu, M., Eur. Phys. J. Plus130, 36 (2015).
[91] Ronveaux, A., Heun’s Differential Equations (Oxford Univ. Press, 1995). · Zbl 0847.34006
[92] Slavyanov, S. Y. and Lay, W., Special Functions: A Unified Theory Based in Singularities (Oxford Univ. Press, 2000). · Zbl 1064.33006
[93] Medeiros, E. R. F. and Bezerra de Mello, E. R., Eur. Phys. J. C72, 2051 (2012).
[94] Bakke, K. and Furtado, C., Ann. Phys. (N. Y.)355, 48 (2015). · Zbl 1343.81065
[95] Arfken, G. B. and Weber, H. J., Mathematical Methods for Physicists (Elsevier Academic Press, 2005). · Zbl 1066.00001
[96] de Oliveira, A. L. C. and Bezerra de Mello, E. R., Class. Quantum Grav.23, 5249 (2006). · Zbl 1101.83314
[97] Cunha, M. S., Muniz, C. R., Christiansen, H. R. and Bezerra, V. B., Eur. Phys. J. C76, 512 (2016).
[98] Vitória, R. L. L. and Belich, H., Adv. High Energy Phys.2019, 1248393 (2019). · Zbl 1418.81043
[99] Nikiforov, A. F. and Uvarov, V. B., Special Functions of Mathematical Physics (Birkhaüser, 1988). · Zbl 0624.33001
[100] Vitória, R. L. L. and Bakke, K., Eur. Phys. J. Plus131, 36 (2016).
[101] Vitória, R. L. L., Furtado, C. and Bakke, K., Ann. Phys. (N. Y.)370, 128 (2016). · Zbl 1380.81463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.