×

Theory of defects in solids and three-dimensional gravity. (English) Zbl 0875.53018

Summary: Description of continuous distribution of dislocations and disclinations in the framework of Riemann-Cartan geometry is discussed. The action describing static distribution of defects is proposed. It is the unique combination of three-dimensional curvature and torsion squared terms. Known stationary \(M\) point particles solution of three-dimensional gravity are interpreted as describing linear defects in solids.

MSC:

53Z05 Applications of differential geometry to physics
74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
83C99 General relativity
Full Text: DOI

References:

[1] Dubrovin, B. A.; Novikov, S. P.; Fomenko, A. T., (Contemporary Geometry (1986), Nauka: Nauka Moscow), [Russian] · Zbl 0601.53001
[2] Kröner, E., Continuum theory of defects, (Balian, R.; etal., Less Houches, Session XXXV, 1980-Physics of Defects (1981), North-Holland: North-Holland Amsterdam), 282-315
[3] Kunin, I. A., Addendum to the Russian edition of the book “Tensor Analysis for Physicist” by J. A. Schouten (1965), Nauka: Nauka Moscow, [Russian]
[4] Hehl, F. W.; von der Heyde, P.; Kerlick, G. D.; Nester, J. M., General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys., 48, No. 3, 393-416 (1976) · Zbl 1371.83017
[5] McCrea, J. D.; Hehl, F. W.; Mielke, E. W., Mapping Noether identities into Bianchi identities in general relativistic theories of gravity and in the field theory of static lattice defects, Int. J. Theor. Phys., 29, No. 11, 1185-1206 (1990) · Zbl 0713.53047
[6] Cartan, É., C. R. Acad. Sci. (Paris), 174, 593 (1922) · JFM 48.0854.02
[7] Cosserat, E.; Cosserat, F., Théorie des corps déformables (1909), Harmann: Harmann Paris · JFM 40.0862.02
[8] Katanaev, M. O.; Volovich, I. V., Higgs fields in Kaluza-Klein theory with dynamical torsion, Phys. Lett. B, 156, Nos. 5-6, 327-330 (1985)
[9] Rosenbaum, M.; Ryan, M., Spontaneous compactification and coupling constants in \(R^2\) unified gauge theories, Phys. Rev. D, 37, No. 10, 2920-2933 (1988)
[10] Katanaev, M. O.; Volovich, I. V., Two-dimensional gravity with dynamical torsion and strings, Ann. Phys. (N.Y.), 197, No. 1, 1-32 (1990) · Zbl 0875.53030
[11] Kondo, K., On the geometrical and physical foundations of the theory of yielding, (Proceedings 2nd Japan Nat. Congr. Appl. Mech.. Proceedings 2nd Japan Nat. Congr. Appl. Mech., Tokyo (1952)), 41
[12] Bilby, B. A.; Bullough, R.; Smith, E., (Proc. Roy. Soc. London A, 231 (1955)), 263
[13] Kadić, A.; Edelen, D. G.B., (A Gauge Theory of Dislocations and Disclinations (1983), Springer-Verlag: Springer-Verlag Berlin/Heidelberg) · Zbl 0523.73089
[14] Dzyasloshinskii, I. E.; Volovik, G. E., On the concept of local invariance in the theory of spin glasses, J. Phys., 39, No. 6, 693-700 (1978)
[15] Deser, S.; Jackiw, R.; ’t Hooft, G., Three-dimensional Einstein gravity: Dynamics of flat space, Ann. Phys. (N.Y.), 152, No. 1, 220-235 (1984)
[16] Gott, J. R.; Alpert, M., General relativity in a (2 + 1)-dimensional space-time, Gen. Rel. Grav., 16, No. 3, 243-247 (1984)
[17] Giddings, S.; Abbott, J.; Kuchar̆, K., Einstein’s theory in a three-dimensional space-time, Gen. Rel. Grav., 16, No. 8, 751-775 (1984) · Zbl 0541.53021
[18] Martinec, E., Soluble systems sin quantum gravity, Phys. Rev. D, 30, No. 6, 1198-1204 (1984)
[19] Banks, T.; Fischler, W.; Susskind, L., Quantum cosmology in 2 + 1 and 3 + 1 dimensions, Nucl. Phys. B, 262, No. 1, 159-186 (1985)
[20] Jackiw, R., Lower dimensional gravity, Nucl. Phys. B, 252, No. 2, 343-356 (1985)
[21] Marsden, J.; Hughes, T. J.R., (Mathematical Foundations of Elasticity (1982), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ)
[22] Kröner, E., The differential geometry of elementary point and line defects in Bravais crystals, Int. J. Theor. Phys., 29, No. 11, 1219-1237 (1990) · Zbl 0709.53050
[23] Grachev, A. V.; Nesterov, A. I.; Ovchinnikov, S. G., The gauge theory of point defects, Phys. Stat. Sol. (b), 156, No. 2, 403-410 (1989)
[24] Landau, L. D.; Lifshits, E. M., (Theory of Elasticity (1987), Nauka: Nauka Moscow), [Russian]
[25] Green, M. B.; Schwarz, J. H.; Witten, E., (Superstring Theory, Vols. 1, 2 (1987), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK) · Zbl 0619.53002
[26] Sezgin, E.; van Nieuwenhuizen, P., New ghost-free gravity lagrangians with propagating torsion, Phys. Rev. D, 21, No. 12, 3269-3280 (1980)
[27] Verçin, A., Metric-torsion gauge theory of continuum line defects, Int. J. Theor. Phys., 29, No. 1, 7-21 (1990) · Zbl 0692.53030
[28] Deser, S.; Jackiw, R., String sources in (2 + 1)-dimensional gravity, Ann. Phys. (N.Y.), 192, 352-367 (1989) · Zbl 0701.53093
[29] Grignani, G.; Lee, C., Stationary solutions in (2 + 1)-dimensional gravity with string sources, Ann. Phys. (N.Y.), 196, 386-418 (1989) · Zbl 0875.53045
[30] Witten, E., (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B, 311, No. 1, 46-78 (1988/1989) · Zbl 1258.83032
[31] Hehl, F. W.; Ne’eman, Y., Spacetime as a continuum with microstructure and metric-affine gravity, ((1990)), 1-23, preprint TAUP N202-90
[32] M. O. KatanaevClass. Quantum Grav; M. O. KatanaevClass. Quantum Grav · Zbl 0774.53048
[33] Kuhfuss, R.; Nitsch, J., Propagating modes in gauge field theories of gravity, Gen. Rel. Grav., 18, No. 12, 1207-1227 (1986)
[34] Kleinert, H., (Gauge fields in condensed matter, Vol. II (1989), World Scientific) · Zbl 0785.53061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.