×

Einstein’s theory in a three-dimensional space-time. (English) Zbl 0541.53021

After considering general relativity as either a theory of a Riemannian space-time or as canonical geometrodynamics, the strange behaviour of Einstein’s theory in three dimensions is discussed with some emphasis on properties of the break-down of the Newtonian limit. The discussion is extended to homogeneous isotropic cosmologies in n dimensions. Applications include collapsing clouds of dust and static stars in three dimensions.
Reviewer: J.Spicker

MSC:

53B50 Applications of local differential geometry to the sciences
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83F05 Relativistic cosmology
83E05 Geometrodynamics and the holographic principle
Full Text: DOI

References:

[1] Whitrow, G. J. (1955).Br. J. Philos. Sci.,6, 13–31; or M. Jammer (1969).Concepts of Space, 2nd ed. (Harvard University Press, Cambridge, Massachusetts). · doi:10.1093/bjps/VI.21.13
[2] t’Hooft, G., and Veltman, M. (1972).Nucl. Phys.,B44, 189. · doi:10.1016/0550-3213(72)90279-9
[3] Schwinger, J. (1962).Phys. Rev.,128, 2425. · Zbl 0118.44001 · doi:10.1103/PhysRev.128.2425
[4] Glimm, J., and Jaffe, A. (1981).Quantum Physics, A Functional Integral Point of View (Springer, Berlin). · Zbl 0461.46051
[5] Deser, S. and van Nieuwehuizen, P. (1974).Phys. Rev. D,10, 401. · doi:10.1103/PhysRevD.10.401
[6] Kuchař, K. (1981). InQuantum Gravity 2: A Second Oxford Symposium. C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford).
[7] Leutwyler, H. (1966).Nuovo Cim.,42, 159. · doi:10.1007/BF02856201
[8] Ryan, M. (1972).Hamiltonian Cosmology (Springer, Berlin); MacCallum, M. A. H. (1975). InQuantum Gravity: An Oxford Symposium, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford).
[9] Einstein, A. (1916). Reprinted in H. A. Lorentz et al. (1952).The Principle of Relativity, trans. by W. Perrett and G. B. Jeffery (Dover, New York), p. 111.
[10] Cartan, E. (1922).J. Math. Pure Appl,1, 141.
[11] Vermeil, H. (1917).Nachr. Ges. Wiss. Gottingen,334.
[12] Weyl, H. (1921).Raum, Zeit, Materie (Springer, Berlin).
[13] Lovelock, D. (1971).J. Math. Phys.,12, 498. · Zbl 0213.48801 · doi:10.1063/1.1665613
[14] Infeld, L., and Schild, A. (1949).Revs. Mod. Phys.,21, 408; Taub, A. (1964).J. Math. Phys.,5, 112. · Zbl 0036.42604 · doi:10.1103/RevModPhys.21.408
[15] Kuchař, K. (1976).J. Math. Phys.,17, 792. · doi:10.1063/1.522977
[16] Kuchař, K. (1974).J. Math. Phys.,15, 708; Hojman, S., Kuchař, K., and Teitelboim, C. (1974).Ann. Phys. (N. Y.),96, 88. · doi:10.1063/1.1666715
[17] Eisenhart, L. P. (1949).Riemannian Geometry (Princeton University Press, Princeton, New Jersey), p. 92. · Zbl 0041.29403
[18] Kuchař, K. (1978).J. Math. Phys.,19, 390. · doi:10.1063/1.523684
[19] Allen, M., and Kuchař, K. Work in progress.
[20] Deser, S., Jackiw, R., and Templeton, S. (1982).Ann. Phys. (N. Y.),140, 372; Levin, J. (1964). Brandeis thesis (unpublished; available through Ann Arbor microprints). · doi:10.1016/0003-4916(82)90164-6
[21] Misner, C., Thorne, K., and Wheeler, J. (1973).Gravitation (W. H. Freeman, San Francisco), Chap. 18.
[22] Misner, C., Thorne, K., and Wheeler, J. (1973). Gravitation (W. H. Freeman, San Francisco), pp. 728, 729.
[23] Giddings, S., to appear inAm. J. Phys.
[24] Bondi, H. (1960).Cosmology, 2nd ed. (Cambridge University Press, Cambridge), p. 73. · Zbl 0046.20807
[25] Israel, W. (1966),Il Nuovo Cim.,X44, 1; Israel, W. (1967).Il Nuovo Cim.,X48, 463; Israel, W. (1967).Phys. Rev.,153, 1388.
[26] Staruszkiewicz, A. (1963).Acta. Phys. Polon.,24, 735.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.