×

A driven tagged particle in symmetric exclusion processes with removals. (English) Zbl 1456.60267

Summary: We consider a driven tagged particle in a symmetric exclusion process on \(\mathbb{Z}\) with a removal rule. In this process, untagged particles are removed once they jump to the left of the tagged particle. We investigate the behavior of the displacement of the tagged particle and prove limit theorems of it: an (annealed) law of large numbers, a central limit theorem, and a large deviation principle. We also characterize a class of ergodic measures for the environment process. Our approach is based on analyzing two auxiliary processes with associated martingales and a regenerative structure.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
37A25 Ergodicity, mixing, rates of mixing

References:

[1] Arratia, R.The motion of a tagged particle in the simple symmetric exclusion system on Z. Ann. Probab.11 (1983), no. 2, 362-373. · Zbl 0515.60097
[2] Avena, L.Random walks in dynamic random environments. Doctoral dissertation, Leiden University, 2010.
[3] Avena, L.; dosSantos, R. S.; Völlering, F.Transient random walk in symmetric exclusion: limit theorems and an Einstein relation. ALEA Lat. Am. J. Probab. Math. Stat.10 (2013), no. 2, 693-709. · Zbl 1277.60185
[4] Avena, L.; Jara, M.; Völlering, F.Explicit LDP for a slowed RW driven by a symmetric exclusion process. Probab. Theory Related Fields.171 (2018), no. 3‐4, 865-915. https://doi.org/10.1007/s00440‐017‐0797‐6 · Zbl 1402.60028 · doi:10.1007/s00440‐017‐0797‐6
[5] Bérard, J.; Ramírez, A. F.Large deviations of the front in a one‐dimensional model of X + Y → 2X. Ann. Probab.38 (2010), no. 3, 955-1018. https://doi.org/10.1214/09‐AOP502 · Zbl 1203.60144 · doi:10.1214/09‐AOP502
[6] Bérard, J.; Ramírez, A.Fluctuations of the front in a one‐dimensional model for the spread of an infection. Ann. Probab.44 (2016), no. 4, 2770-2816. · Zbl 1356.60160
[7] Carinci, G.; De Masi., A.; Giardinà, C.; Presutti, E. Free boundary problems in PDEs and particle systems. Springer Briefs in Mathematical Physics, 12, Springer, Cham, 2016. 10.1007/978‐3‐319‐33370‐0 · Zbl 1370.35001
[8] Comets, F.; Quastel, J.; Ramírez, A. F.Fluctuations of the front in a stochastic combustion model. Ann. Inst. H. Poincaré Probab. Statist.43 (2007), no. 2, 147-162. https://doi.org/10.1016/j.anihpb.2006.01.005 · Zbl 1111.82038 · doi:10.1016/j.anihpb.2006.01.005
[9] Comets, F.; Quastel, J.; Ramírez, A. F.Fluctuations of the front in a one dimensional model of x + y → 2x. Trans. Amer. Math. Soc.361 (2009), no. 11, 6165-6189. https://doi.org/10.1090/S0002‐9947‐09‐04889‐2 · Zbl 1177.82081 · doi:10.1090/S0002‐9947‐09‐04889‐2
[10] De Masi, A.; Ferrari, P. A.; Presutti, E.Symmetric simple exclusion process with free boundaries. Probab. Theory Related Fields161 (2015), no. 1‐2, 155-193. https://doi.org/10.1007/s00440‐014‐0546‐z · Zbl 1316.60144 · doi:10.1007/s00440‐014‐0546‐z
[11] Dembo. A; Zeitouni. O. Large deviations techniques and applications. Second edition. Applications of Mathematics (New York), 38. Springer, New York, 1998. 10.1007/978‐1‐4612‐5320‐4 · Zbl 0896.60013
[12] denHollander, F.; dosSantos, R. S.Scaling of a random walk on a supercritical contact process. Ann. Inst. Henri Poincaré Probab. Stat.50 (2014), no. 4, 1276-1300. https://doi.org/10.1214/13‐AIHP561 · Zbl 1322.60020 · doi:10.1214/13‐AIHP561
[13] Hernández. F.; Jara, M.; Valentim, F. J.Equilibrium fluctuations for a discrete Atlas model. Stochastic Process. Appl.127 (2017), no. 3, 783-802. https://doi.org/10.1016/j.spa.2016.06.026 · Zbl 1355.60121 · doi:10.1016/j.spa.2016.06.026
[14] Hilário, M. R.; den Hollander, F.; dos Santos, R. S.; Sidoravicius, V.; Teixeira, A. Random walk on random walks. Electron. J. Probab. 20 (2015), no. 95, 35 pp. 10.1214/EJP.v20‐4437 · Zbl 1328.60226
[15] Hilário, M.; Kious, D.; Teixeira, A. Random walk on the simple symmetric exclusion process. Preprint, 2019. 1906.03167 [math.PR]
[16] HuveneersF.; SimenhausF. Random walk driven by the simple exclusion process. Electron. J. Probab. 20 (2015) no. 105 42 pp. 10.1214/EJP.v20‐3906 · Zbl 1328.60227
[17] Jara, M.Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Comm. Pure Appl. Math.62 (2009), no. 2, 198-214. https://doi.org/10.1002/cpa.20253 · Zbl 1153.82015 · doi:10.1002/cpa.20253
[18] Jara, M. D.; Landim, C.Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. H. Poincaré Probab. Statist.42 (2006), no. 5, 567-577. https://doi.org/10.1016/j.anihpb.2005.04.007 · Zbl 1101.60080 · doi:10.1016/j.anihpb.2005.04.007
[19] Jara, M.; Moreno, G.; Ramírez, A. F.Front propagation in an exclusion one‐dimensional reactive dynamics. Markov Process. Related Fields14 (2008), no. 2, 185-206. · Zbl 1157.60026
[20] Kesten, H.; Ramírez, A. F.; Sidoravicius, V. Asymptotic shape and propagation of fronts for growth models in dynamic random environment. Probability in complex physical systems, 195-223. Springer Proceedings in Mathematics, 11. Springer, Heidelberg, 2012. 10.1007/978‐3‐642‐23811‐6_8 · Zbl 1251.60076
[21] Kipnis, C.; Landim, C.Scaling limits of interacting particle systems. Grundlehren der mathematischen Wissenschaften, 320. Springer, Berlin, 1999. 10.1007/978‐3‐662‐03752‐2 · Zbl 0927.60002
[22] Kipnis, C.; VaradhanS. R. S.Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion. Comm. Math. Phys.104 (1986), no. 1, 1-19. · Zbl 0588.60058
[23] Komorowski, T.; Olla, S.On mobility and Einstein relation for tracers in time‐Mixing random environments. J. Stat. Phys.118 (2005), no. 3‐4, 407-435. https://doi.org/10.1007/s10955‐004‐8815‐3 · Zbl 1126.82331 · doi:10.1007/s10955‐004‐8815‐3
[24] Landim, C.; Olla, S.; Volchan, S. B.Driven tracer particle in one‐dimensional symmetric simple exclusion. Comm. Math. Phys.192 (1998), no. 2, 287-307. https://doi.org/10.1007/s002200050300 · Zbl 0911.60085 · doi:10.1007/s002200050300
[25] Landim, C.; Valle, G.A microscopic model for Stefan’s melting and freezing problem. Ann. Probab.34 (2006), no. 2, 779-803. https://doi.org/10.1214/009117905000000701 · Zbl 1097.60082 · doi:10.1214/009117905000000701
[26] Liggett, T. Interacting particle systems. Grundlehren der mathematischen Wissenschaften, 276. Springer, New York, 1985. 10.1007/978‐1‐4613‐8542‐4 · Zbl 0559.60078
[27] Liggett, T. M.Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren der mathematischen Wissenschaften, 324. Springer, Berlin, 1999. 10.1007/978‐3‐662‐03990‐8 · Zbl 0949.60006
[28] Loulakis, M.Einstein relation for a tagged particle in simple exclusion processes. Comm. Math. Phys.229 (2002), no. 2, 347-367. https://doi.org/10.1007/s00220‐002‐0692‐5 · Zbl 1005.60098 · doi:10.1007/s00220‐002‐0692‐5
[29] Mountford, T.; Vares, M. E. Random walks generated by equilibrium contact processes. Electron. J. Probab. 20 (2015), no. 3, 17 pp. 10.1214/EJP.v20‐3439 · Zbl 1325.60161
[30] Redig, F., Völlering, F.Random walks in dynamic random environments: a transference principle. Ann. Probab.41 (2013), no. 5, 3157-3180. https://doi.org/10.1214/12‐AOP819 · Zbl 1277.82051 · doi:10.1214/12‐AOP819
[31] Saada, E.A limit theorem for the position of a tagged particle in a simple exclusion process. Ann. Probab.15, (1987), no. 1, 375-381. · Zbl 0617.60096
[32] Sethuraman, S.; Varadhan, S. R. S.Large deviations for the current and tagged particle in 1D nearest‐neighbor symmetric simple exclusion. Ann. Probab.41 (2013), no. 3A, 1461-1512. https://doi.org/10.1214/11‐AOP703 · Zbl 1287.60117 · doi:10.1214/11‐AOP703
[33] Sethuraman, S.; Varadhan, S. R. S.; Yau, H.‐T.Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Comm. Pure Appl. Math.53 (2000), no. 8, 972-1006. https://doi.org/10.1002/1097‐0312(200008)53:8<972::AID‐CPA2>3.0.CO;2‐# · Zbl 1029.60084 · doi:10.1002/1097‐0312
[34] Varadhan, S. R. S.Self‐diffusion of a tagged particle in equilibrium for asymmetric mean zero random walks with simple exclusion. Ann. Inst. H. Poincaré Probab. Statist.31 (1995), no. 1, 273-285. · Zbl 0816.60093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.