×

Large deviations of the front in a one-dimensional model of \(X+Y\rightarrow 2X\). (English) Zbl 1203.60144

A system of two types (\(X\) and \(Y\)) of interacting particles on \(\mathbb{Z}\) is studied. \(X\) particles movement is described by independent, continuous time, symmetric, simple random walk with total jump rate \(D_X=2\) whereas \(Y\) (inert) particles evolve according to a random walk with total jump rate \(D_Y=0\). Initially, there are \(\eta(x)\) of \(X\) particles at sites \(x=0,-1,-2,\dots\) (with \(\eta(x)\geq 1\) for some \(x\)) and a fixed number \(a\) of \(Y\) particles at \(x=1,2,\dots\). When a site \(x=1,2,\dots\) is visited by an \(X\) particle for the first time, all \(Y\) particles located at \(x\) are instantaneously turned into \(X\) particles and start moving. This model can be interpreted as an infection process or as a combustion reaction.
Let \(r_t\) be the rightmost site that has been visited by an \(X\) particle up to time \(t\) (\(r_0:=0\)). Due to F. Comets et al. [Trans. Am. Math. Soc. 361, No. 11, 6165–6189 (2009; Zbl 1177.82081)] if \(\sum_{x\leq 0} \exp(\theta x)\eta(x)<\infty\;(\ast)\) for a small enough \(\theta >0\), then \(r_t/t\to v\) a.s. as \(t\to \infty\), here a constant \(v\in (0,\infty)\). The main result by J. Bérard and A. Ramirez states that if \((\ast)\) is satisfied for all \(\theta >0\), then the large deviation principle holds for \(r_t/t\) (as \(t\to \infty)\) with some rate function \(I\). Moreover, the lower bound is given for \(\mathbb{P}(c\leq r_t/t \leq b)\) for all \(0\leq c<b <v\), the upper bound is provided for \(\mathbb{P}(r_t/t \leq b)\) for each \(0\leq b <v\) and two-sided inequalities are obtained for \(\mathbb{P}(r_t=0)\) as \(t\to \infty\).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F10 Large deviations

Citations:

Zbl 1177.82081

References:

[1] Alves, O. S. M., Machado, F. P. and Popov, S. Y. (2002). The shape theorem for the frog model. Ann. Appl. Probab. 12 533-546. · Zbl 1013.60081 · doi:10.1214/aoap/1026915614
[2] Baltrūnas, A., Daley, D. J. and Klüppelberg, C. (2004). Tail behaviour of the busy period of a GI / GI /1 queue with subexponential service times. Stochastic Process. Appl. 111 237-258. · Zbl 1082.60080 · doi:10.1016/j.spa.2004.01.005
[3] Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 iv+190. · Zbl 0517.60083
[4] Comets, F., Quastel, J. and Ramírez, A. F. (2007). Fluctuations of the front in a stochastic combustion model. Ann. Inst. H. Poincaré Probab. Statist. 43 147-162. · Zbl 1111.82038 · doi:10.1016/j.anihpb.2006.01.005
[5] Comets, F., Quastel, J. and Ramírez, A. F. (2009). Fluctuations of the front in a one dimensional model of x + y \rightarrow 2 x. Trans. Amer. Math. Soc. 361 6165-6189. · Zbl 1177.82081 · doi:10.1090/S0002-9947-09-04889-2
[6] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications , 2nd ed. Applications of Mathematics ( New York ) 38 . Springer, New York. · Zbl 0896.60013
[7] Denisov, D., Dieker, A. B. and Shneer, V. (2008). Large deviations for random walks under subexponentiality: The big-jump domain. Ann. Probab. 36 1946-1991. · Zbl 1155.60019 · doi:10.1214/07-AOP382
[8] Durrett, R. (1996). Probability : Theory and Examples , 2nd ed. Duxbury Press, Belmont, CA. · Zbl 0709.60002
[9] Ebert, U. and van Saarloos, W. (2000). Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts. Phys. D 146 1-99. · Zbl 0984.35030 · doi:10.1016/S0167-2789(00)00068-3
[10] Esary, J. D., Proschan, F. and Walkup, D. W. (1967). Association of random variables, with applications. Ann. Math. Statist. 38 1466-1474. · Zbl 0183.21502 · doi:10.1214/aoms/1177698701
[11] Fisher, R. A. (1937). The wave of advance of advantageous genes. Ann. Eugenics 7 355-369. · JFM 63.1111.04
[12] Kesten, H. and Sidoravicius, V. (2005). The spread of a rumor or infection in a moving population. Ann. Probab. 33 2402-2462. · Zbl 1111.60074 · doi:10.1214/009117905000000413
[13] Kolmogorov, A., Petrovsky, I. and Piscounov, N. (1937). Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Etat Moscou Sér. Int. Sect. A Math. Mécan. 1 1-25. · Zbl 0018.32106
[14] Mai, J., Sokolov, I. M. and Blumen, A. (1996). Front propagation and local ordering in one-dimensional irreversible autocatalytic reactions. Phys. Rev. Lett. 77 4462-4465.
[15] Mai, J., Sokolov, I. M. and Blumen, A. (2000). Front propagation in one-dimensional autocatalytic reactions: The breakdown of the classical picture at small particle concentrations. Phys. Rev. E 62 141-145.
[16] Mai, J., Sokolov, I. M., Kuzovkov, V. N. and Blumen, A. (1997). Front form and velocity in a one-dimensional autocatalytic a + b \rightarrow 2 a reaction. Phys. Rev. E 56 4130-4134.
[17] Mikosch, T. and Nagaev, A. V. (1998). Large deviations of heavy-tailed sums with applications in insurance. Extremes 1 81-110. · Zbl 0927.60037 · doi:10.1023/A:1009913901219
[18] Panja, D. (2004). Effects of fluctuations in propagating fronts. Phys. Rep. 393 87-174.
[19] Pisztora, A. and Povel, T. (1999). Large deviation principle for random walk in a quenched random environment in the low speed regime. Ann. Probab. 27 1389-1413. · Zbl 0964.60056 · doi:10.1214/aop/1022677453
[20] Pisztora, A., Povel, T. and Zeitouni, O. (1999). Precise large deviation estimates for a one-dimensional random walk in a random environment. Probab. Theory Related Fields 113 191-219. · Zbl 0922.60059 · doi:10.1007/s004400050206
[21] Ramírez, A. F. and Sidoravicius, V. (2004). Asymptotic behavior of a stochastic combustion growth process. J. Eur. Math. Soc. ( JEMS ) 6 293-334. · Zbl 1049.60089 · doi:10.4171/JEMS/11
[22] van Saarloos, W. (2003). Front propagation into unstable states. Phys. Rep. 386 29-222. · Zbl 1042.74029 · doi:10.1016/j.physrep.2003.08.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.