×

Effects of pesticide dose on Holling II predator-prey model with feedback control. (English) Zbl 1447.92559

Summary: We establish a Holling II predator-prey system with pesticide dose response nonlinear pulses and then study the global dynamics of the model. First, we construct the Poincaré map in the phase set and discuss its main properties. Second, threshold conditions for the existence and stability of boundary periodic solution and order-\(k \) (\(k \geq 1\)) periodic solutions have been provided. The results show that the pesticide dose increases when the period of control increases, while it will decrease as threshold increases. Sensitivity analyses reveal that critical condition for the stability of boundary periodic solution is very sensitive to control parameters and pesticide doses. The bifurcation analysis reveals that the proposed model exists complex dynamics. Compared to the model with fixed moments, it demonstrates that the density of pest population not only can be controlled below the threshold but also can avoid some negative effects due to pesticide application, confirming the importance of biological control.

MSC:

92D45 Pest management
92D25 Population dynamics (general)
34C25 Periodic solutions to ordinary differential equations
93B52 Feedback control

References:

[1] D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman, Harlow, Vol. 66, 1993. [Google Scholar] · Zbl 0815.34001
[2] S. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex-models of disease transmission? An HIV model, as an example, Int. Stat. Rev. 62 (1994), pp. 229-243. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0825.62860
[3] K. Ciesielski, On time reparametrizations and isomorphisms of impulsive dynamical systems, Ann. Polon. Math. 84 (2004), pp. 1-25. [Crossref], [Google Scholar] · Zbl 1098.37015
[4] C.J. Dai, M. Zhao and L.S. Chen, Homoclinic bifurcation in semi-continuous dynamic systems, Int. J. Biomath. 05 (2012), 1250059, 19 pages. [Crossref], [Google Scholar] · Zbl 1305.34065
[5] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, New York, 1989. [Google Scholar] · Zbl 0695.58002
[6] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic, Dordrecht, 1988. [Crossref], [Google Scholar] · Zbl 0664.34001
[7] M.Z. Huang, J.X. Li, X.Y. Song and H.J. Guo, Modeling impulsive injections of insulin: towards artificial pancreas, SIAM J. Appl. Math. 72 (2012), pp. 1524-1548. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1325.92045
[8] S.U. Karaagac, Insecticide Resistance, InTech Press, London, 2012. [Google Scholar]
[9] S. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl. 150 (1990), pp. 120-128. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0711.34015
[10] Y. Kuang and H.I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems, Math. Biosci. 88 (1988), pp. 67-84. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0642.92016
[11] T. Li and J. Yorke, Period three implies chaos, Amer. Math. 82 (1975), pp. 985-992. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0351.92021
[12] J.H. Liang, S.Y. Tang, R.A. Cheke and J.H. Wu, Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance, Bull. Math. Biol. 75 (2013), pp. 2167-2195. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1283.92074
[13] X.N. Liu and L.S. Chen, Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos Solitons Fractals 16 (2003), pp. 311-320. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1085.34529
[14] B. Liu, Z.D. Teng and L.S. Chen, Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy, J. Comput. Appl. Math. 193 (2006), pp. 347-362. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1089.92060
[15] B. Liu, Y. Tian and B.L. Kang, Dynamics on a Holling II predator-prey model with state-dependent impulsive control, Int. J. Biomath. 5 (2012), 18 pages. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1280.92075
[16] Y. Liu, X. Zhang and T. Zhou, Multiple periodic solutions of a delayed predator-prey model with non-monotonic functional response and stage structure, J. Biol. Dyn. 8(1) (2014), pp. 145-160. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1448.92223
[17] Y. Lv, R. Yuan and Y. Pei, Two types of predator-prey models with harvesting: non-smooth and non-continuous, J. Comput. Appl. Math. 250 (2013), pp. 122-142. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1285.92015
[18] S. Marino, I.B. Hogue, C.J. Ray and D.E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol. 254 (2008), pp. 178-196. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1400.92013
[19] M.D. McKay, R.J. Beckman and W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics. 21 (1979), pp. 239-245. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0415.62011
[20] J.C. Panetta, A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment, Bull. Math. Biol. 58 (1996), pp. 425-447. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0859.92014
[21] W.J. Qin, S.Y. Tang and R.A. Cheke, The effects of resource limitation on a predator-prey model with control measures as nonlinear pulses, Math. Probl. Eng. 2014 (2014), 14pages. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1407.34024
[22] P. Simeonov and D. Bainov, Orbital stability of periodic solutions of autonomous systems with impulsive effect, Int. J. Systems Sci. 19 (1988), pp. 2561-2585. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0669.34044
[23] K.B. Sun, T.H. Zhang and Y. Tian, Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate, Math. Biosci. 279 (2016), pp. 13-26. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1346.92061
[24] S.Y. Tang and R.A. Cheke, Models for integrated pest control and their biological implications, Math. Biosci. 215 (2008), pp. 115-125. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1156.92046
[25] S.Y. Tang, Y.N. Xiao and R.A. Cheke, Multiple attractors of host-parasitoid models with integrated pest management strategies: eradication, persistence and outbreak, Theor. Popul. Biol. 73 (2008), pp. 181-197. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1208.92093
[26] S.Y. Tang, Y.N. Xiao and R.A. Cheke, Effects of predator and prey dispersal on success or failure of biological control, Bull. Math. Biol. 71 (2009), pp. 2025-2047. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1180.92091
[27] S.Y. Tang, Y.N. Xiao and R.A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simulat. 80 (2010), pp. 894-921. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1183.92060
[28] S.Y. Tang, W.H. Pang, R.A. Cheke and J.H. Wu, Global dynamics of a state-dependent feedback control system, Adv. Differ. Equ. 2015 (2015), pp. 322. [Crossref], [Google Scholar] · Zbl 1422.34093
[29] S.Y. Tang, B. Tang, A.L. Wang and Y.N. Xiao, Holling II predator-prey impulsive semi-dynamic model with complex Poincaré map, Nonlinear Dynam. 81 (2015), pp. 1575-1596. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1348.34042
[30] S.Y. Tang, Y.N. Xiao and J.H. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep. 5 (2015), pp. 672. [Web of Science ®], [Google Scholar]
[31] M.B. Thomas, Ecological approaches and the development of truly integrated pest management, Proc. Natl. Acad. Sci. 96 (1999), pp. 5944-5951. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[32] V.I. Utkin, J. Guldner and J.X. Shi, Sliding Mode Control in Electro-mechanical Systems, 2nd ed., Taylor & Francis Group, Boca Raton, 2009. [Crossref], [Google Scholar]
[33] J.C. Van Lenteren and J. Woets, Biological and integrated pest control in greenhouses, Annu. Rev. Entomol. 33 (1988), pp. 239. [Crossref], [Web of Science ®], [Google Scholar]
[34] Y.P. Wang, M. Zhao, X.H. Pan and C.J. Dai, Dynamic analysis of a phytoplankton-fish model with biological and artificial control, Discrete Dyn. Nat. Soc. 2014 (2014). doi:doi: 10.1155/2014/914647. [Crossref], [Google Scholar] · Zbl 1418.92231
[35] J. Yang and S.Y. Tang, Holling type II predator-prey model with nonlinear pulse as state-dependent feedback control, J. Comput. Appl. Math. 291 (2016), pp. 225-241. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1329.92118
[36] J. Yang, S.Y. Tang and Y.S. Tan, Complex dynamics and bifurcation analysis of host-parasitoid models with impulsive control strategy, Chaos Soliton. Fract. 91 (2016), pp. 522-532. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1372.92097
[37] J. Yang, G.Y. Tang and S.Y. Tang, Modelling the regulatory system of a chemostat model with a threshold window, Math. Comput. Simulat. 132 (2017), pp. 220-235. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1519.92135
[38] T.Q. Zhang, W.B. Ma, X.Z. Meng and T.H. Zhang, Periodic solution of a prey-predator model with nonlinear state feedback control, Appl. Math. Comput. 266 (2015), pp. 95-107. [Web of Science ®], [Google Scholar] · Zbl 1410.34243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.