×

Asymptotically exact a posteriori error estimates of eigenvalues by the Crouzeix-Raviart element and enriched Crouzeix-Raviart element. (English) Zbl 1432.65168

Summary: Two asymptotically exact a posteriori error estimates are proposed for eigenvalues by the nonconforming Crouzeix-Raviart and enriched Crouzeix-Raviart elements. The main challenge in the design of such error estimators comes from the nonconformity of the finite element spaces used. Such nonconformity causes two difficulties: the first is the construction of high accuracy gradient recovery algorithms, and the second is a computable high accuracy approximation of a consistency error term. The first difficulty was solved for both nonconforming elements in a previous paper. Two methods are proposed to solve the second difficulty in the present paper. In particular, this solution allows the use of high accuracy gradient recovery techniques. Further, a postprocessing algorithm is designed by utilizing asymptotically exact a posteriori error estimators to construct the weights of a combination of two approximate eigenvalues. This algorithm requires solving only one eigenvalue problem and admits high accuracy eigenvalue approximations both theoretically and numerically.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

References:

[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math., John Wiley & Sons, New York, 2000. · Zbl 1008.65076
[2] I. Babuška and W. C. Rheinboldt, A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 12 (1978), pp. 1597-1615, https://doi.org/10.1002/nme.1620121010. · Zbl 0396.65068
[3] I. Babuška, T. Strouboulis, C. Upadhyay, S. Gangaraj, and K. Copps, Validation of a posteriori error estimators by numerical approach, Internat. J. Numer. Methods Engrg., 37 (1994), pp. 1073-1123, https://doi.org/10.1002/nme.1620370702. · Zbl 0811.65088
[4] R. Becker, S. Mao, and Z. Shi, A convergent nonconforming adaptive finite element method with quasi-optimal complexity, SIAM J. Numer. Anal., 47 (2010), pp. 4639-4659, https://doi.org/10.1137/070701479. · Zbl 1208.65154
[5] J. H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68 (1994), pp. 311-324, https://doi.org/10.1007/s002110050064. · Zbl 0823.65103
[6] C. Carstensen, All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable, Math. Comp., 73 (2004), pp. 1153-1165, https://doi.org/10.1090/S0025-5718-03-01580-1. · Zbl 1067.65115
[7] C. Carstensen and J. Hu, A unifying theory of a posteriori error control for nonconforming finite element methods, Numer. Math., 107 (2007), pp. 473-502, https://doi.org/10.1007/s00211-007-0068-z. · Zbl 1127.65083
[8] C. Carstensen, J. Hu, and A. Orlando, Framework for the a posteriori error analysis of nonconforming finite elements, SIAM J. Numer. Anal., 45 (2007), pp. 68-82, https://doi.org/10.1137/050628854. · Zbl 1165.65072
[9] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary \Stokes equations I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 7 (1973), pp. 33-75, https://doi.org/10.1051/m2an/197307r300331. · Zbl 0302.65087
[10] R. G. Durán, C. Padra, and R. Rodríguez, A posteriori error estimates for the finite element approximation of eigenvalue problems, Math. Models Methods Appl. Sci., 13 (2003), pp. 1219-1229, https://doi.org/10.1142/S0218202503002878. · Zbl 1072.65144
[11] H. Guo and Z. Zhang, Gradient recovery for the Crouzeix-Raviart element, J. Sci. Comput., 64 (2015), pp. 456-476, https://doi.org/10.1007/s10915-014-9939-5. · Zbl 1325.65153
[12] J. Hu, Y. Huang, and Q. Lin, Lower bounds for eigenvalues of elliptic operators: By nonconforming finite element methods, J. Sci. Comput., 61 (2014), pp. 196-221, https://doi.org/10.1007/s10915-014-9821-5. · Zbl 1335.65089
[13] J. Hu, Y. Huang, and Q. Shen, A high accuracy post-processing algorithm for the eigenvalues of elliptic operators, J. Sci. Comput., 52 (2012), pp. 426-445, https://doi.org/10.1007/s10915-011-9552-9. · Zbl 1255.65206
[14] J. Hu, Y. Huang, and Q. Shen, Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods, Numer. Math., 131 (2015), pp. 273-302, https://doi.org/10.1007/s00211-014-0688-z. · Zbl 1326.65156
[15] J. Hu and L. Ma, Asymptotic Expansions of Eigenvalues by both the Crouzeix-Raviart and Enriched Crouzeix-Raviart Elements, preprint, https://arxiv.org/abs/1902.09524, 2019. · Zbl 1479.65029
[16] J. Hu, L. Ma, and R. Ma, Optimal Superconvergence Analysis for the Crouzeix-Raviart and the Morley Elements, preprint, https://arxiv.org/abs/1808.09810, 2018. · Zbl 1352.65436
[17] J. Hu and R. Ma, Superconvergence of both the Crouzeix-Raviart and Morley elements, Numer. Math., 132 (2016), pp. 491-509, https://doi.org/10.1007/s00211-015-0729-2. · Zbl 1352.65436
[18] Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp., 77 (2008), pp. 1253-1268, https://doi.org/10.1090/S0025-5718-08-02051-6. · Zbl 1195.65193
[19] Y. Huang and N. Yi, The superconvergent cluster recovery method, J. Sci. Comput., 44 (2010), pp. 301-322, https://doi.org/10.1007/s10915-010-9379-9. · Zbl 1203.65256
[20] M. G. Larson, A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal., 38 (2000), pp. 608-625, https://doi.org/10.1137/S0036142997320164. · Zbl 0974.65100
[21] Y. Li, A posteriori error analysis of nonconforming methods for the eigenvalue problem, J. Syst. Sci. Complex., 22 (2009), pp. 495-502, https://doi.org/10.1007/s11424-009-9181-7. · Zbl 1188.65150
[22] Y.-W. Li, Global superconvergence of the lowest-order mixed finite element on mildly structured meshes, SIAM J. Numer. Anal., 56 (2018), pp. 792-815, https://doi.org/10.1137/17M112587X. · Zbl 1448.65240
[23] Q. Lin and A. Zhou, Notes on superconvergence and its related topics, J. Comput. Math., 11 (1993), pp. 211-214. · Zbl 0790.65095
[24] L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aeronaut. Quart., 19 (1968), pp. 149-169, https://doi.org/10.1017/S0001925900004546.
[25] A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), pp. 1780-1800, https://doi.org/10.1137/S0036142903413002. · Zbl 1078.65098
[26] A. Naga, Z. Zhang, and A. Zhou, Enhancing eigenvalue approximation by gradient recovery, SIAM J. Sci. Comput., 28 (2006), pp. 1289-1300, https://doi.org/10.1137/050640588. · Zbl 1148.65087
[27] R. Rannacher, Nonconforming finite element methods for eigenvalue problems in linear plate theory, Numer. Math., 33 (1979), pp. 23-42, https://doi.org/10.1007/BF01396493. · Zbl 0394.65035
[28] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292-315. · Zbl 0362.65089
[29] Z.-C. Shi and M. Wang, The Finite Element Method, Science Press, Beijing, 2010 (in Chinese).
[30] R. Verfürth, A posteriori error estimates for nonlinear problems: Finite element discretizations of elliptic equations, Math. Comp., 62 (1994), pp. 445-475, https://doi.org/10.1090/S0025-5718-1994-1213837-1. · Zbl 0799.65112
[31] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, London, UK, 1996. · Zbl 0853.65108
[32] N. Yan and A. Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 4289-4299, https://doi.org/10.1016/s0045-7825(00)00319-4. · Zbl 0986.65098
[33] Y.-D. Yang, A posteriori error estimates in Adini finite element for eigenvalue problems, J. Comput. Math., 18 (2000), pp. 413-418. · Zbl 0957.65092
[34] Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property, SIAM J. Sci. Comput., 26 (2005), pp. 1192-1213, https://doi.org/10.1137/S1064827503402837. · Zbl 1078.65110
[35] O. C. Zienkiewicz and J. Zhu, The superconvergent patch recovery and a posteriori error estimates: Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), pp. 1331-1364, https://doi.org/10.1002/nme.1620330702. · Zbl 0769.73084
[36] O. C. Zienkiewicz and J. Zhu, The superconvergent patch recovery and a posteriori error estimates: Part 2: Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33 (1992), pp. 1365-1382, https://doi.org/10.1002/nme.1620330703. · Zbl 0769.73085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.