×

Bumpless transfer control for switched positive linear systems with \(L_1\)-gain property. (English) Zbl 1429.93167

Summary: This study concentrates on the problem of bumpless transfer control for a category of switched positive linear systems with \(L_1\)-gain property. The objective is to reduce the control bumps at switching instants and to maintain the \(L_1\)-gain property as well. For a system in this category with pre-designed controllers, a controller gain interpolation technique is employed to realize the bumpless transfer control. Under the bumpless transfer controllers, the system can satisfy the \(L_1\)-gain property for any switching rules with a dwell time restraint. For the general case, that is, the controllers are to be designed, the bumpless transfer performance is described by a magnitude constraint on the control signal. By co-design of the controllers and switching scheme, we solve the issue of bumpless transfer control for the system with \(L_1\)-gain property, even if the problem of the subsystems is unsolvable. Also, a sufficient condition ensuring the bumpless transfer performance and the \(L_1\)-gain property is obtained. Finally, via controlling a turbofan model, we illustrate the effectiveness of the presented control strategies.

MSC:

93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C28 Positive control/observation systems
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Liberzon, D., Switching in Systems and Control (2003), Springer Science Business Media · Zbl 1036.93001
[2] Lin, H.; Antsaklis, P. J., Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54, 2, 308-322 (2009) · Zbl 1367.93440
[3] Zhao, J.; Hill, D. J., Dissipativity theory for switched systems, IEEE Trans. Automat. Control, 53, 4, 941-953 (2008) · Zbl 1367.93452
[4] Baldi, S.; Xiang, W., Reachable set estimation for switched linear systems with dwell-time switching, Nonlinear Anal. Hybrid Syst., 29, 20-33 (2018) · Zbl 1388.93018
[5] Sun, X. M.; Wang, W., Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics, Automatica, 48, 9, 2359-2364 (2012) · Zbl 1257.93089
[6] Valdivia, V.; Todd, R.; Bryan, F. J.; Barrado, A.; Lazaro, A.; Forsyth, A. J., Behavioral modeling of a switched reluctance generator for aircraft power systems, IIEEE Trans. Ind. Electron., 61, 6, 2690-2699 (2014)
[7] Qi, Y. W.; Bao, W.; Chang, J. T., State-based switching control strategy with application to aero-engines safety protection, J. Aerosp. Eng., 28, 3 (2015)
[8] Sun, X. M.; Wu, D.; Liu, G. P.; Wang, W., Input-to-state stability for networked predictive control with random delays in both feedback and forward channels, IIEEE Trans. Ind. Electron., 61, 7, 3519-3526 (2014)
[9] Deaecto, G. S.; Souza, M.; Geromel, J. C., Discrete-time switched linear systems state feedback design with application to networked control, IEEE Trans. Automat. Control, 60, 3, 877-881 (2015) · Zbl 1360.93332
[10] Zhao, X.; Zhang, L.; Shi, P.; Karimi, H. R., Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic circuits, IIEEE Trans. Ind. Electron., 61, 8, 4161-4170 (2014)
[11] Liu, L.; Liu, Y. J.; Tong, S., Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems, IEEE Trans. Cybern. (2018)
[12] Zhao, J.; Hill, D. J., On stability \(L_2\)-gain and \(H_\infty\) control for switched systems, Automatica, 44, 5, 1220-1232 (2008) · Zbl 1283.93147
[13] Malloci, I.; Hetel, L.; Daafouz, J.; Szczepanski, P.; Szczepanski, P., Bumpless transfer for switched linear systems, Automatica, 48, 7, 1440-1446 (2012) · Zbl 1246.93075
[14] Bendtsen, J. D.; Stoustrup, J.; Trangbaek, K., Bumpless transfer between observer-based gain scheduled controllers, Internat. J. Control, 78, 7, 491-504 (2006) · Zbl 1088.93007
[15] Safaei, F. R.P.; Hespanha, J. P.; Stewart, G., On controller initialization in multivariable switching systems, Automatica, 48, 12, 3157-3165 (2012) · Zbl 1255.93128
[16] Hanus, Kinnaert; Henrotte, L. J., Conditioning technique, a general anti-windup and bumpless transfer method, Automatica, 23, 6, 729-739 (1987) · Zbl 0638.93036
[17] Kothare, M. V.; Campo, P. J.; Morari, M.; Nett, C. N., A unified framework for the study of anti-windup designs, Automatica, 30, 12, 1869-1883 (1994) · Zbl 0825.93312
[18] Turner, M. C.; Walker, D. J., Linear quadratic bumpless transfer, Automatica, 36, 8, 1089-1101 (2000) · Zbl 0960.93013
[19] Zaccarian, L.; Teel, A. R., The \(L_2(l_2)\) bumpless transfer problem for linear plants: Its definition and solution, Automatica, 41, 7, 1273-1280 (2005) · Zbl 1115.93348
[20] Zheng, K.; Lee, A. H.; Bentsman, J.; Taft, C. W., Steady-state bumpless transfer under controller uncertainty using the state/output feedback topology, IEEE Trans. Control Syst. Technol., 14, 1, 3-17 (2006)
[21] Zheng, K.; Bentsman, J., Input/output structure of the infinite horizon lq bumpless transfer and its implications for transfer operator synthesis, Int. J. Robust Nonlin. Control, 27, 8, 923-938 (2010) · Zbl 1298.93169
[22] Mari Battistelli, G.; Mosca, E. D.; Tesi, P., Performance-oriented transfer for switching control, Automatica, 49, 7, 2302-2305 (2013) · Zbl 1364.93003
[23] Cheong, S. Y.; Safonov, M. G., Slow-fast controller decomposition bumpless transfer for adaptive switching control, IEEE Trans. Automat. Control, 57, 3, 721-726 (2012) · Zbl 1369.93297
[24] Daafouz, J.; Geromel, J. C.; Deaecto, G. S., A simple approach for switched control design with control bumps limitation, Systems Control Lett., 61, 12, 1215-1220 (2012) · Zbl 1255.93072
[25] Zhao, Y.; Zhao, J., Almost output regulation bumpless transfer control for switched linear systems, IET Control Theory Appl., 12, 14, 1932-1940 (2018)
[26] Lim, Y. H.; Ahn, H. S., Stability analysis of linear systems under state and rate saturations, Automatica, 49, 2, 496-502 (2013) · Zbl 1259.93103
[27] Li, H.; Yan, W.; Shi, Y., Triggering and control co-design in self-triggered model predictive control of constrained systems: with guaranteed performance, IEEE Trans. Automat. Control (2018) · Zbl 1423.93147
[28] Niu, B.; Liu, Y.; Zong, G.; Han, Z.; Fu, J., Command filter-based adaptive neural tracking controller design for uncertain switched nonlinear output-constrained systems, IEEE Trans. Cybernetics, 47, 10, 3160-3171 (2017)
[29] Tanaka, T.; Langbort, C., The bounded real lemma for internally positive systems and \(H_\infty\) structured static state feedback, IEEE Trans. Automat. Control, 56, 9, 2218-2223 (2011) · Zbl 1368.93158
[30] Blanchini, F.; Colaneri, P.; Valcher, M. E., Co-positive Lyapunov functions for the stabilization of positive switched systems, IEEE Trans. Automat. Control, 57, 12, 3038-3050 (2012) · Zbl 1369.93566
[31] Mason, O.; Shorten, R., On linear copositive Lyapunov functions and the stability of switched positive linear systems, IEEE Trans. Automat. Control, 52, 7, 1346-1349 (2007) · Zbl 1366.34077
[32] Zhao, X.; Liu, X.; Yin, S.; Li, H., Improved results on stability of continuous-time switched positive linear systems, Automatica, 50, 2, 614-621 (2014) · Zbl 1364.93583
[33] Sun, Y., Stability analysis of positive switched systems via joint linear copositive Lyapunov functions, Nonlinear Anal. Hybrid Syst., 19, 146-152 (2016) · Zbl 1329.93120
[34] Ma, R. C.; wang, X. M.; Liu, Y., Robust stability of switched positive linear systems with interval uncertainties via multiple time-varying linear copositive Lyapunov functions, Nonlinear Anal. Hybrid Syst., 30, 285-292 (2018) · Zbl 1408.93094
[35] Chen, G.; Yang, Y., Finite-time stability of switched positive linear systems, Int. J. Robust Nonlin. Control, 24, 1, 179-190 (2014) · Zbl 1278.93229
[36] Liu, J.; Lian, J.; Zhuang, Y., Output feedback \(L_1\) finite-time control of switched positive delayed systems with MDADT, Nonlinear Anal. Hybrid Syst., 15, 11-22 (2015) · Zbl 1301.93086
[37] Zhang. Z. Z. Han, J. F.; Zhu, F. B., \(L_1\)-Gain analysis and control synthesis of positive switched systems, Internat. J. Systems Sci., 46, 12, 2111-2121 (2015) · Zbl 1332.93127
[38] Xiang, W.; Lam, J.; Shen, J., Stability analysis and \(L_1\)-gain characterization for switched positive systems under dwell-time constraint, Automatica, 85, 1-8 (2017) · Zbl 1375.93108
[39] Ren, Y.; Sun, G.; Feng, Z.; Er, M. J.; Wu, S., Weighted-average \(L_1\) filtering for switched positive systems, Int. J. Robust Nonlin. Control, 27, 18, 5097-5112 (2017) · Zbl 1381.93097
[40] Zhao, Y.; Zhao, J., \(H_\infty\) Reliable bumpless transfer control for switched systems with state and rate constraints, IEEE Trans. Syst. Man, Cybern. Syst. (2018)
[41] Liu, S. L.; Xiang, Z. R., Exponential \(L_1\) output tracking control for positive switched linear systems with time-varying delays, Nonlinear Anal. Hybrid Syst., 11, 118-128 (2014) · Zbl 1291.93272
[42] Hespanha, J. P., Uniform stability of switched linear systems: Extensions of Lasalle’s invariance principle, IEEE Trans. Automat. Control, 49, 4, 470-482 (2004) · Zbl 1365.93348
[43] Allerhand, L. I.; Shaked, U., Robust state-dependent switching of linear systems with dwell time, IEEE Trans. Automat. Control, 58, 4, 994-1001 (2013) · Zbl 1369.93454
[44] Souza, M.; Fioravanti, A. R.; Corless, M.; Shorten, R. N., Switching controller design with dwell-times and sampling, IEEE Trans. Automat. Control, 62, 11, 5837-5843 (2017) · Zbl 1390.93417
[45] Hu, T.; Ma, L.; Lin, Z., Stabilization of switched systems via composite quadratic functions, IEEE Trans. Automat. Control, 53, 11, 2571-2585 (2008) · Zbl 1367.93509
[46] Richter, H., Advanced Control of Turbofan Engines (2012), Springer New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.