×

Solving inverse problems using data-driven models. (English) Zbl 1429.65116

Summary: Recent research in inverse problems seeks to develop a mathematically coherent foundation for combining data-driven models, and in particular those based on deep learning, with domain-specific knowledge contained in physical-analytical models. The focus is on solving ill-posed inverse problems that are at the core of many challenging applications in the natural sciences, medicine and life sciences, as well as in engineering and industrial applications. This survey paper aims to give an account of some of the main contributions in data-driven inverse problems.

MSC:

65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65J22 Numerical solution to inverse problems in abstract spaces
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
Full Text: DOI

References:

[1] M.Abadi (2015), TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from https://www.tensorflow.org
[2] B.Adcock and A. C.Hansen (2016), ‘Generalized sampling and infinite-dimensional compressed sensing’, Found. Comput. Math.16, 1263-1323. · Zbl 1379.94026
[3] J.Adler and S.Lunz (2018), Banach Wasserstein GAN. In Advances in Neural Information Processing Systems 31 (NIPS 2018) (S.Bengio, eds), Curran Associates, pp. 6754-6763.
[4] J.Adler and O.Öktem (2017), ‘Solving ill-posed inverse problems using iterative deep neural networks’, Inverse Problems33, 124007. · Zbl 1394.92070
[5] J.Adler and O.Öktem (2018a), Deep Bayesian inversion: Computational uncertainty quantification for large scale inverse problems. arXiv:1811.05910
[6] J.Adler and O.Öktem (2018b), ‘Learned primal – dual reconstruction’, IEEE Trans. Medical Imaging37, 1322-1332.
[7] J.Adler, S.Lunz, O.Verdier, C.-B.Schönlieb and O.Öktem (2018), Task adapted reconstruction for inverse problems. arXiv:1809.00948 · Zbl 07543696
[8] L.Affara, B.Ghanem and P.Wonka (2018), Supervised convolutional sparse coding. arXiv:1804.02678
[9] S.Agapiou, S.Larsson and A. M.Stuart (2013), ‘Posterior contraction rates for the Bayesian approach to linear ill-posed inverse problems’, Stoch. Process. Appl.123, 3828-3860. · Zbl 1284.62289
[10] S.Agapiou, A. M.Stuart and Y. X.Zhang (2014), ‘Bayesian posterior contraction rates for linear severely ill-posed inverse problems’, J. Inverse Ill-Posed Problems22, 297-321. · Zbl 1288.62036
[11] H. K.Aggarwal, M. P.Mani and M.Jacob (2019), ‘MoDL: Model-based deep learning architecture for inverse problems’, IEEE Trans. Medical Imaging38, 394-405.
[12] M.Aharon, M.Elad and A. M.Bruckstein (2006), ‘K-SVD: An algorithm for designing of over-complete dictionaries for sparse representation’, IEEE Trans. Signal Process.54, 4311-4322. · Zbl 1375.94040
[13] A.Ahmed, M.Aly, J.Gonzalez, S.Narayanamurthy and A.Smola (2012), Scalable inference in latent variable models. In Proceedings of the Fifth ACM International Conference on Web Search and Data Mining (WSDM ’12, pp. 123-132.
[14] N.Akhtar and A.Mian (2018), Threat of adversarial attacks on deep learning in computer vision: A survey. arXiv:1801.00553
[15] W. K.Allard, G.Chen and M.Maggioni (2012), ‘Multi-scale geometric methods for data sets, II: Geometric multi-resolution analysis’, Appl. Comput. Harmon. Anal.32, 435-462. · Zbl 1242.42038
[16] D.Allman, A.Reiter and M. A. L.Bell (2018), ‘Photoacoustic source detection and reflection artifact removal enabled by deep learning’, IEEE Trans. Medical Imaging37, 1464-1477.
[17] L.Ambrosio, N.Fusco and D.Pallara (2000), Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press. · Zbl 0957.49001
[18] H.Andrade-Loarca, G.Kutyniok, O.Öktem and P.Petersen (2019), Extraction of digital wavefront sets using applied harmonic analysis and deep neural networks. arXiv:1901.01388 · Zbl 1439.35009
[19] M.Andrychowicz, M.Denil, S.Gomez, M.Hoffman, D.Pfau, T.Schaul and N.de Freitas (2016), Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems 29 (NIPS 2016) (D. D.Lee, eds), Curran Associates, pp. 3981-3989.
[20] V.Antun, F.Renna, C.Poon, B.Adcock and A. C.Hansen (2019), On instabilities of deep learning in image reconstruction: Does AI come at a cost? arXiv:1902.05300v1
[21] L.Ardizzone, J.Kruse, S.Wirkert, D.Rahner, E. W.Pellegrini, R. S.Klessen, L.Maier-Hein, C.Rother and U.Köthe (2018), Analyzing inverse problems with invertible neural networks. arXiv:1808.04730
[22] M.Argyrou, D.Maintas, C.Tsoumpas and E.Stiliaris (2012), Tomographic image reconstruction based on artificial neural network (ANN) techniques. In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 3324-3327.
[23] M.Arjovsky, S.Chintala and L.Bottou (2017), Wasserstein generative adversarial networks. In 34th International Conference on Machine Learning (ICML ’17), pp. 214-223.
[24] S.Armato, G.McLennan, L.Bidaut, M.McNitt-Gray, C.Meyer, A.Reeves, B.Zhao, D.Aberle, C.Henschke and E.Hoffman (2011), ‘The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans’, Med. Phys.38, 915-931.
[25] S. R.Arridge and O.Scherzer (2012), ‘Imaging from coupled physics’, Inverse Problems28, 080201.
[26] S. R.Arridge and J. C.Schotland (2009), ‘Optical tomography: Forward and inverse problems’, Inverse Problems25, 123010. · Zbl 1188.35197
[27] A.Aspri, S.Banert, O.Öktem and O.Scherzer (2018), A data-driven iteratively regularized Landweber iteration. arXiv:1812.00272 · Zbl 07241785
[28] P.Auer, M.Herbster and M. K.Warmuth (1996), Exponentially many local minima for single neurons. In 8th International Conference on Neural Information Processing Systems (NIPS), MIT Press, pp. 316-322.
[29] T.Bai, H.Yan, X.Jia, S.Jiang, G.Wang and X.Mou (2017), Volumetric computed tomography reconstruction with dictionary learning. In 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D 2017).
[30] A. B.Bakushinskii (1984), ‘Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion’, USSR Comput. Math. Math. Phys.24, 181-182. · Zbl 0595.65064
[31] G.Bal, F.Chung and J.Schotland (2016), ‘Ultrasound modulated bioluminescence tomography and controllability of the radiative transport equation’, SIAM J. Math. Anal.48, 1332-1347. · Zbl 1335.35291
[32] G.Balakrishnan, A.Zhao, M. R.Sabuncu, J.Guttag and A. V.Dalca (2019), ‘VoxelMorph: A learning framework for deformable medical image registration’, IEEE Trans. Imaging, to appear. arXiv:1809.05231
[33] L.Baldassarre, Y.-H.Li, J.Scarlett, B.Gözcü, I.Bogunovic and V.Cevher (2016), ‘Learning-based compressive subsampling’, IEEE J. Selected Topics Signal Process10, 809-822.
[34] A.Banerjee, X.Guo and H.Wang (2005), ‘On the optimality of conditional expectation as a Bregman predictor’, IEEE Trans. Inform. Theory51, 2664-2669. · Zbl 1284.94025
[35] S.Banert, A.Ringh, J.Adler, J.Karlsson and O.Öktem (2018), Data-driven nonsmooth optimization. arXiv:1808.00946 · Zbl 1435.90105
[36] A. R.Barron (1994), ‘Approximation and estimation bounds for artificial neural networks’, Machine Learning14, 115-133. · Zbl 0818.68127
[37] F.Baus, M.Nikolova and G.Steidl (2014), ‘Fully smoothed L1-TV models: Bounds for the minimizers and parameter choice’, J. Math. Imaging Vision48, 295-307. · Zbl 1292.49036
[38] H. H.Bauschke and P. L.Combettes (2017), Convex Analysis and Monotone Operator Theory in Hilbert Spaces, second edition, CMS Books in Mathematics, Springer. · Zbl 1359.26003
[39] P.Beard (2011), ‘Biomedical photoacoustic imaging’, Interface Focus1, 602-631.
[40] A.Beck and M.Teboulle (2009), ‘A fast iterative shrinkage – thresholding algorithm for linear inverse problems’, SIAM J. Imaging Sci.2, 183-202. · Zbl 1175.94009
[41] A.Beck, S.Sabach and M.Teboulle (2016), ‘An alternating semiproximal method for nonconvex regularized structured total least squares problems’, SIAM J. Matrix Anal. Appl.37, 1129-1150. · Zbl 1346.90676
[42] S.Becker, Y.Zhang and A. A.Lee (2018), Geometry of energy landscapes and the optimizability of deep neural networks. arXiv:1805.11572
[43] Y.Bengio, P.Simard and P.Frasconi (1994), ‘Learning long-term dependencies with gradient descent is difficult’, IEEE Trans. Neural Networks5, 157-166.
[44] M.Benning and M.Burger (2018), Modern regularization methods for inverse problems. In Acta Numerica, Vol. 27, Cambridge University Press, pp. 1-111. · Zbl 1431.65080
[45] M.Benning, C.Brune, M.Burger and J.Müller (2013), ‘Higher-order TV methods: Enhancement via Bregman iteration’, J. Sci. Comput.54, 269-310. · Zbl 1308.94012
[46] F.Benvenuto, A. L.Camera, C.Theys, A.Ferrari, H.Lantéri and M.Bertero (2008), ‘The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise’, Inverse Problems24, 035016. · Zbl 1148.68558
[47] J. O.Berger (1985), Statistical Decision Theory and Bayesian Analysis, second edition, Springer. · Zbl 0572.62008
[48] R.Berinde, A. C.Gilbert, P.Indyk, H.Karloff and M. J.Strauss (2008), Combining geometry and combinatorics: A unified approach to sparse signal recovery. In 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 798-805.
[49] M.Bertero and P.Boccacci (1998), Introduction to Inverse Problems in Imaging, Institute of Physics Publishing. · Zbl 0914.65060
[50] M.Bertero, H.Lantéri and L.Zanni (2008), Iterative image reconstruction: A point of view. In Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation (IMRT) (Y.Censor, eds), pp. 37-63.
[51] D.Bertsekas (1999), Nonlinear Programming, second edition, Athena Scientific. · Zbl 1015.90077
[52] J.Besag (1974), ‘Spatial interaction and the statistical analysis of lattice systems’, J. Royal Statist. Soc. B36, 192-236. · Zbl 0327.60067
[53] J.Besag and P. J.Green (1993), ‘Spatial statistics and Bayesian computation’, J. Royal Statist. Soc. B55, 25-37. · Zbl 0800.62572
[54] M.Betancourt (2017), A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434
[55] L.Biegler, G.Biros, O.Ghattas, M.Heinkenschloss, D.Keyes, B.Mallick, L.Tenorio, B.van Bloemen Waanders, K.Willcox and Y.Marzouk (2011), Large-Scale Inverse Problems and Quantification of Uncertainty, Vol. 712 of Wiley Series in Computational Statistics, Wiley. · Zbl 1203.62002
[56] N.Bissantz, T.Hohage, A.Munk and F.Ruymgaart (2007), ‘Convergence rates of general regularization methods for statistical inverse problems and applications’, SIAM J. Numer. Anal.45, 2610-2636. · Zbl 1234.62062
[57] A.Blake and A.Zisserman (1987), Visual Reconstruction, MIT Press.
[58] D. M.Blei, A.Küçükelbir and J. D.McAuliffe (2017), ‘Variational inference: A review for statisticians’, J. Amer. Statist. Assoc.112(518), 859-877.
[59] I. R.Bleyer and R.Ramlau (2013), ‘A double regularization approach for inverse problems with noisy data and inexact operator’, Inverse Problems29, 025004. · Zbl 1266.47026
[60] T.Blumensath (2013), ‘Compressed sensing with nonlinear observations and related nonlinear optimization problems’, IEEE Trans. Inform. Theory59, 3466-3474. · Zbl 1364.94111
[61] T.Blumensath and M. E.Davies (2008), ‘Iterative thresholding for sparse approximations’, J. Fourier Anal. Appl.14, 629-654. · Zbl 1175.94060
[62] N.Bochkina (2013), ‘Consistency of the posterior distribution in generalized linear inverse problems’, Inverse Problems29, 095010. · Zbl 1408.65017
[63] Y. E.Boink, S. A.van Gils, S.Manohar and C.Brune (2018), ‘Sensitivity of a partially learned model-based reconstruction algorithm’, Proc. Appl. Math. Mech.18, e201800222.
[64] H.Bölcskei, P.Grohs, G.Kutyniok and P.Petersen (2019), ‘Optimal approximation with sparsely connected deep neural networks’, SIAM J. Math. Data Sci.1, 8-45. · Zbl 1499.41029
[65] J. F.Bonnans and D.Tiba (1991), ‘Pontryagin’s principle in the control of semilinear elliptic variational inequalities’, Appl. Math. Optim.23, 299-312. · Zbl 0728.49003
[66] E.Bostan, U. S.Kamilov and L.Waller (2018), ‘Learning-based image reconstruction via parallel proximal algorithm’, IEEE Signal Process. Lett.25, 989-993.
[67] R.Boţ and E.Csetnek (2015), ‘On the convergence rate of a forward – backward type primal – dual splitting algorithm for convex optimization problems’, Optimization64, 5-23. · Zbl 1476.47045
[68] R.Boţ and C.Hendrich (2013), ‘A Douglas-Rachford type primal – dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators’, SIAM J. Optim.23, 2541-2565. · Zbl 1295.47066
[69] L.Bottou, F. E.Curtis and J.Nocedal (2018), ‘Optimization methods for large-scale machine learning’, SIAM Review60, 223-311. · Zbl 1397.65085
[70] S.Boyd, N.Parikh, E.Chu, B.Peleato and J.Eckstein (2011), ‘Distributed optimization and statistical learning via the alternating direction method of multipliers’, Found. Trends Mach. Learn.3, 1-122. · Zbl 1229.90122
[71] K.Bredies and T.Valkonen (2011), Inverse problems with second-order total generalized variation constraints. In 9th International Conference on Sampling Theory and Applications (SampTA 2011).
[72] K.Bredies, K.Kunisch and T.Pock (2011), ‘Total generalized variation’, SIAM J. Imaging Sci.3, 492-526. · Zbl 1195.49025
[73] K.Bredies, K.Kunisch and T.Valkonen (2013), ‘Properties of <![CDATA \([l^1]]\)>-<![CDATA \([\text{TGV}^2]]\)>: The one-dimensional case’, J. Math. Anal. Appl.398, 438-454. · Zbl 1253.49024
[74] K.Bredies, D. A.Lorenz and P.Maass (2009), ‘A generalized conditional gradient method and its connection to an iterative shrinkage method’, Comput. Optim. Appl.42, 173-193. · Zbl 1179.90326
[75] L.Breiman, L.Le Cam and L.Schwartz (1965), ‘Consistent estimates and zero-one sets’, Ann. Math. Statist.35, 157-161. · Zbl 0223.62029
[76] H.Bristow, A.Eriksson and S.Lucey (2013), Fast convolutional sparse coding. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013), pp. 391-398.
[77] M. M.Bronstein, J.Bruna, Y.LeCun, A.Szlam and P.Vandergheynst (2017), ‘Geometric deep learning: Going beyond Euclidean data’, IEEE Signal Process. Mag.34, 18-42.
[78] A. M.Bruckstein, D. L.Donoho and M.Elad (2009), ‘From sparse solutions of systems of equations to sparse modeling of signals and images’, SIAM Review51, 34-18. · Zbl 1178.68619
[79] J.Bruna and S.Mallat (2013), ‘Invariant scattering convolution networks’, IEEE Trans. Pattern Anal. Mach. Intel.35, 1872-1886.
[80] A.Buades, B.Coll and J.-M.Morel (2005), A non-local algorithm for image denoising. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Vol. 2, pp. 60-65. · Zbl 1108.94004
[81] T. A.Bubba, G.Kutyniok, M.Lassas, M.März, W.Samek, S.Siltanen and V.Srinivasan (2018), Learning the invisible: A hybrid deep learning – shearlet framework for limited angle computed tomography. arXiv:1811.04602 · Zbl 1416.92099
[82] S.Bubeck (2015), ‘Convex optimization: Algorithms and complexity’, Found. Trends Mach. Learn.8, 231-357. · Zbl 1365.90196
[83] A.Buccini, M.Donatelli and R.Ramlau (2018), ‘A semiblind regularization algorithm for inverse problems with application to image deblurring’, SIAM J. Sci. Comput.40, A452-A483. · Zbl 1383.65058
[84] T.Bui-Thanh, K.Willcox and O.Ghattas (2008), ‘Model reduction for large-scale systems with high-dimensional parametric input space’, SIAM J. Sci. Comput.30, 3270-3288. · Zbl 1196.37127
[85] M.Burger and F.Lucka (2014), ‘Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators’, Inverse Problems30, 114004. · Zbl 1302.62010
[86] R. H.Byrd, G. M.Chin, J.Nocedal and Y.Wu (2012), ‘Sample size selection in optimization methods for machine learning’, Math. Program.134, 127-155. · Zbl 1252.49044
[87] C. L.Byrne (2008), Applied Iterative Methods, Peters/CRC Press. · Zbl 1140.65001
[88] L.Calatroni (2015), New PDE models for imaging problems and applications. PhD thesis, University of Cambridge.
[89] L.Calatroni, C.Cao, J. C.De los Reyes, C.-B.Schönlieb and T.Valkonen (2016), ‘Bilevel approaches for learning of variational imaging models’, Variational Methods18, 252-290. · Zbl 1468.94014
[90] L.Calatroni, J. C.De los Reyes and C.-B.Schönlieb (2014), Dynamic sampling schemes for optimal noise learning under multiple nonsmooth constraints. In 26th IFIP Conference on System Modeling and Optimization (CSMO 2013), Springer, pp. 85-95. · Zbl 1333.94008
[91] L.Calatroni, J. C.De los Reyes and C.-B.Schönlieb (2017), ‘Infimal convolution of data discrepancies for mixed noise removal’, SIAM J. Imaging Sci.10, 1196-1233. · Zbl 1412.94005
[92] A. P.Calderón (1958), ‘Uniqueness in the Cauchy problem for partial differential equations’, Amer. J. Math.80, 16-36. · Zbl 0080.30302
[93] A. P.Calderón and A.Zygmund (1952), ‘On the existence of certain singular integrals’, Acta Math.88, 85. · Zbl 0047.10201
[94] A. P.Calderón and A.Zygmund (1956), ‘On singular integrals’, Amer. J. Math.78, 289-309. · Zbl 0072.11501
[95] D.Calvetti and E.Somersalo (2008), ‘Hypermodels in the Bayesian imaging framework’, Inverse Problems24, 034013. · Zbl 1137.62062
[96] D.Calvetti and E.Somersalo (2017), ‘Inverse problems: From regularization to Bayesian inference’, WIREs Comput. Statist.10, e1427.
[97] D.Calvetti, B.Lewis and L.Reichel (2002), ‘On the regularizing properties of the GMRES method’, Numer. Math.91, 605-625. · Zbl 1022.65044
[98] D.Calvetti, E.Somersalo and A.Strang (2019), ‘Hierarchical Bayesian models and sparsity: <![CDATA \([\ell_2]]\)>-magic’, Inverse Problems35, 035003. · Zbl 1490.62078
[99] E. J.Candès and D. L.Donoho (2005), ‘Continuous curvelet transform, I: resolution of the wavefront set’, Appl. Comput. Harmon. Anal.19, 162-197. · Zbl 1086.42022
[100] E. J.Candès, L.Demanet and L.Ying (2007), ‘Fast computation of Fourier integral operators’, SIAM J. Sci. Comput.29, 2464-2493. · Zbl 1157.65522
[101] E. J.Candès, J. K.Romberg and T.Tao (2006), ‘Robust uncertainty principles: Exact signal reconstruction from highly incomplete Fourier information’, IEEE Trans. Inform. Theory52, 489-509. · Zbl 1231.94017
[102] M.Carriero, A.Leaci and F.Tomarelli (1996), A second order model in image segmentation: Blake & Zisserman functional. In Variational Methods for Discontinuous Structures (R.Serapioni and F.Tomarelli, eds), Springer, pp. 57-72. · Zbl 0915.49004
[103] I.Castillo and R.Nickl (2013), ‘Nonparametric Bernstein – von Mises theorems in Gaussian white noise’, Ann. Statist.41, 1999-2028. · Zbl 1285.62052
[104] I.Castillo and R.Nickl (2014), ‘On the Bernstein – von Mises phenomenon for nonparametric Bayes procedures’, Ann. Statist.42, 1941-1969. · Zbl 1305.62190
[105] A.Chakraborty, M.Alam, V.Dey, A.Chattopadhyay and D.Mukhopadhyay (2018), Adversarial attacks and defences: A survey. arXiv:1810.00069
[106] A.Chambolle and P.-L.Lions (1997), ‘Image recovery via total variation minimization and related problems’, Numer. Math.76, 167-188. · Zbl 0874.68299
[107] A.Chambolle and T.Pock (2011), ‘A first-order primal – dual algorithm for convex problems with applications to imaging’, J. Math. Imaging Vision40, 120-145. · Zbl 1255.68217
[108] A.Chambolle and T.Pock (2016), An introduction to continuous optimization for imaging. In Acta Numerica, Vol. 25, Cambridge University Press, pp. 161-319. · Zbl 1343.65064
[109] A.Chambolle, M.Holler and T.Pock (2018), A convex variational model for learning convolutional image atoms from incomplete data. arXiv:1812.03077v1 · Zbl 1434.68625
[110] T. F.Chan and J.Shen (2006), ‘Image processing and analysis: Variational, PDE, wavelet, and stochastic methods’, BioMed. Engng OnLine5, 38. · Zbl 1095.68127
[111] J. H. R.Chang, C.-L.Li, B.Póczos, B. V. K. V.Kumar and A. C.Sankaranarayanan (2017), One network to solve them all: Solving linear inverse problems using deep projection models. arXiv:1703.09912v1
[112] B.Chen, K.Xiang, Z.Gong, J.Wang and S.Tan (2018), ‘Statistical iterative CBCT reconstruction based on neural network’, IEEE Trans. Medical Imaging37, 1511-1521.
[113] G.Chen and D.Needell (2016), ‘Compressed sensing and dictionary learning’, Proc. Sympos. Appl. Math.73, 201-241. · Zbl 1353.94015
[114] H.Chen, Y.Zhang, Y.Chen, J.Zhang, W.Zhang, H.Sun, Y.Lv, P.Liao, J.Zhou and G.Wang (2019), ‘LEARN: Learned experts’ assessment-based reconstruction network for sparse-data CT’, IEEE Trans. Medical Imaging37, 1333-1347.
[115] H.Chen, Y.Zhang, M. K.Kalra, F.Lin, Y.Chen, P.Liao, J.Zhou and G.Wang (2017a), ‘Low-dose CT with a residual encoder – decoder convolutional neural network’, IEEE Trans. Medical Imaging36, 2524-2535.
[116] H.Chen, Y.Zhang, W.Zhang, P.Liao, K.Li, J.Zhou and G.Wang (2017b), Low-dose CT denoising with convolutional neural network. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 143-146.
[117] Y.Chen, T.Pock and H.Bischof (2012), Learning ℓ_1 -based analysis and synthesis sparsity priors using bi-level optimization. In Workshop on Analysis Operator Learning vs. Dictionary Learning (NIPS 2012).
[118] Y.Chen, T.Pock, R.Ranftl and H.Bischof (2013), Revisiting loss-specific training of filter-based MRFs for image restoration. In German Conference on Pattern Recognition (GCPR 2013), Vol. 8142 of Lecture Notes in Computer Science, Springer, pp. 271-281.
[119] Y.Chen, R.Ranftl and T.Pock (2014), ‘Insights into analysis operator learning: From patch-based sparse models to higher order MRFs’, IEEE Trans. Image Process.23, 1060-1072. · Zbl 1374.94065
[120] Y.Chen, W.Yu and T.Pock (2015), On learning optimized reaction diffusion processes for effective image restoration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), pp. 5261-5269.
[121] F.Chollet (2015), Keras: The Python Deep Learning library https://keras.io
[122] A.Choromanska, M.Henaff, M.Mathieu, G. B.Arous and Y.LeCun (2015), The loss surfaces of multilayer networks. In 18th International Conference on Artificial Intelligence and Statistics (AISTATS 2015), pp. 192-204.
[123] I. Y.Chun, X.Zheng, Y.Long and J. A.Fessler (2017), Sparse-view X-ray CT reconstruction using ℓ_1 regularization with learned sparsifying transform. In 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D 2017).
[124] J.Chung and M. I.Espanol (2017), ‘Learning regularization parameters for general-form Tikhonov’, Inverse Problems33, 074004. · Zbl 1414.68048
[125] C.Clason, T.Helin, R.Kretschmann and P.Piiroinen (2018), Generalized modes in Bayesian inverse problems. arXiv:1806.00519 · Zbl 1430.62053
[126] A.Cohen, W.Dahmen and R.DeVore (2009), ‘Compressed sensing and best <![CDATA \([k]]\)>-term approximation’, J. Amer. Math. Soc.22, 211-231. · Zbl 1206.94008
[127] J.Cohen, E.Rosenfeld and J. Z.Kolter (2019), Certified adversarial robustness via randomized smoothing. arXiv:1902.02918v1
[128] P. L.Combettes and J.-C.Pesquet (2011), Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering (H. H.Bauschke, eds), Vol. 49 of Springer Optimization and its Applications, Springer, pp. 185-212. · Zbl 1242.90160
[129] P. L.Combettes and J.-C.Pesquet (2012), ‘Primal – dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators’, Set-Valued Var. Anal.20, 307-330. · Zbl 1284.47043
[130] P. L.Combettes and V. R.Wajs (2005), ‘Signal recovery by proximal forward – backward splitting’, Multiscale Model. Simul.4, 1168-1200. · Zbl 1179.94031
[131] R.Costantini and S.Susstrunk (2004), Virtual sensor design. In Electronic Imaging 2004, International Society for Optics and Photonics, pp. 408-419.
[132] A.Courville, I.Goodfellow and Y.Bengio (2017), Deep Learning, MIT Press. · Zbl 1373.68009
[133] G. R.Cross and A. K.Jain (1983), ‘Markov random field texture models’, IEEE Trans. Pattern Anal. Mach. Intel.5, 25-39.
[134] G.Cybenko (1989), ‘Approximation by superpositions of a sigmoidal function’, Math. Control Signals Syst.2, 303-314. · Zbl 0679.94019
[135] C. O.da Luis and A. J.Reader (2017), Deep learning for suppression of resolution-recovery artefacts in MLEM PET image reconstruction. In 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 1-3.
[136] K.Dabov, A.Foi, V.Katkovnik and K.Egiazarian (2007), ‘Image denoising by sparse 3-D transform-domain collaborative filtering’, IEEE Trans. Image Process.16, 2080-2095.
[137] A. V.Dalca, G.Balakrishnan, J.Guttag and M. R.Sabuncu (2018), Unsupervised learning for fast probabilistic diffeomorphic registration. In 21st International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2018) (A. F.Frangi, eds), Vol. 11070 of Lecture Notes in Computer Science, Springer, pp. 729-738.
[138] M.Dashti and A. M.Stuart (2017), The Bayesian approach to inverse problems. In Handbook of Uncertainty Quantification (R.Ghanem, eds), Springer, chapter 10.
[139] M.Dashti, K. J. H.Law, A. M.Stuart and J.Voss (2013), ‘MAP estimators and their consistency in Bayesian nonparametric inverse problems’, Inverse Problems29, 095017. · Zbl 1281.62089
[140] I.Daubechies, M.Defrise and C.De Mol (2004), ‘An iterative thresholding algorithm for linear inverse problems with a sparsity constraint’, Commun. Pure Appl. Math.57, 1413-1457. · Zbl 1077.65055
[141] I.Daubechies (1991), Ten Lectures on Wavelets, Vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM. · Zbl 0776.42018
[142] M. E.Davison (1983), ‘The ill-conditioned nature of the limited angle tomography problem’, SIAM J. Appl. Math.43, 428-448. · Zbl 0526.44005
[143] E.Davoli and P.Liu (2018), ‘One dimensional fractional order TGV: Gamma-convergence and bi-level training scheme’, Commun. Math. Sci.16, 213-237. · Zbl 1441.94007
[144] A.Dax (1993), ‘On row relaxation methods for large constrained least squares problems’, SIAM J. Sci. Comput.14, 570-584. · Zbl 0782.65075
[145] J. C.De los Reyes (2011), ‘Optimal control of a class of variational inequalities of the second kind’, SIAM J. Control Optim.49, 1629-1658. · Zbl 1226.49008
[146] J. C.De los Reyes (2015), Numerical PDE-Constrained Optimization, Springer. · Zbl 1312.65100
[147] J. C.De los Reyes and C.-B.Schönlieb (2013), ‘Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization’, Inverse Problems7, 1183-1214. · Zbl 1283.49005
[148] J. C.De los Reyes, C.-B.Schönlieb and T.Valkonen (2016), ‘The structure of optimal parameters for image restoration problems’, J. Math. Anal. Appl.434, 464-500. · Zbl 1327.49063
[149] J. C.De los Reyes, C.-B.Schönlieb and T.Valkonen (2017), ‘Bilevel parameter learning for higher-order total variation regularisation models’, J. Math. Imaging Vision57, 1-25. · Zbl 1425.94010
[150] A. P.Dempster, N. M.Laird and D. B.Rubin (1977), ‘Maximum likelihood from incomplete data via the EM algorithm’, J. Royal Statist. Soc. B39, 1-38. · Zbl 0364.62022
[151] E. Y.Derevtsov, A. V.Efimov, A. K.Louis and T.Schuster (2011), ‘Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography’, J. Inverse Ill-Posed Problems19, 689-715. · Zbl 1279.33015
[152] A.Diaspro, M.Schneider, P.Bianchini, V.Caorsi, D.Mazza, M.Pesce, I.Testa, G.Vicidomini and C.Usai (2007), Two-photon excitation fluorescence microscopy. In Science of Microscopy (P. W.Hawkes and J. C. H.Spence, eds), Vol. 2, Springer, Chapter 11, pp. 751-789.
[153] S.Dittmer, T.Kluth, P.Maass and D. O.Baguer (2018), Regularization by architecture: A deep prior approach for inverse problems. arXiv:1812.03889 · Zbl 1434.68505
[154] I.Dokmanić, J.Bruna, S.Mallat and M.de Hoop (2016), Inverse problems with invariant multiscale statistics. arXiv:1609.05502
[155] K.Doksum (1974), ‘Tail-free and neutral random probabilities and their posterior distributions’, Ann. Probab.2, 183-201. · Zbl 0279.60097
[156] W.Dong, G.Shi, Y.Ma and X.Li (2015), ‘Image restoration via simultaneous sparse coding: Where structured sparsity meets Gaussian scale mixture’, Internat. J. Comput. Vision114, 217-232. · Zbl 1398.94029
[157] W.Dong, L.Zhang, G.Shi and X.Li (2013), ‘Nonlocally centralized sparse representation for image restoration’, IEEE Trans. Image Process.22, 1620-1630. · Zbl 1373.94104
[158] W.Dong, L.Zhang, G.Shi and X.Wu (2011), ‘Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization’, IEEE Trans. Image Process.20, 1838-1857. · Zbl 1372.94072
[159] D. L.Donoho, Y.Tsaig, I.Drori and J.-L.Starck (2012), ‘Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit’, IEEE Trans. Inform. Theory58, 1094-1121. · Zbl 1365.94069
[160] J. L.Doob (1948), Application of the theory of martingales. In International Colloquium du CNRS: Probability Theory and its Application, pp. 22-28. · Zbl 0041.45101
[161] F.Draxler, K.Veschgini, M.Salmhofer and F.Hamprecht (2018), ‘Essentially no barriers in neural network energy landscape’, Proc. Mach. Learning Res.80, 1309-1318.
[162] Y.Drori and M.Teboulle (2014), ‘Performance of first-order methods for smooth convex minimization: A novel approach’, Math. Program.145, 451-482. · Zbl 1300.90068
[163] A.Durmus, E.Moulines and M.Pereyra (2018), ‘Efficient Bayesian computation by proximal Markov chain Monte Carlo: When Langevin meets Moreau’, SIAM J. Imaging Sci.11, 473-506. · Zbl 1401.65016
[164] W.E, J.Han and A.Jentzen (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. arXiv:1706.04702 · Zbl 1382.65016
[165] J.Eckstein and D.Bertsekas (1992), ‘On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators’, Math. Program.55, 293-318. · Zbl 0765.90073
[166] M.Elad (2010), Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer. · Zbl 1211.94001
[167] M.Elad and M.Aharon (2006), ‘Image denoising via sparse and redundant representations over learned dictionaries’, IEEE Trans. Image Process.15, 3736-3745.
[168] Y. C.Eldar and G.Kutyniok (2012), Compressed Sensing: Theory and Applications, Cambridge University Press.
[169] H. W.Engl, M.Hanke and A.Neubauer (2000), Regularization of Inverse Problems, Vol. 375 of Mathematics and its Applications, Springer. · Zbl 0859.65054
[170] H. W.Engl, K.Kunisch and A.Neubauer (1989), ‘Convergence rates for Tikhonov regularisation of non-linear ill-posed problems’, Inverse Problems5, 523. · Zbl 0695.65037
[171] C.Esteves, C.Allen-Blanchette, A.Makadia and K.Daniilidis (2017), Learning SO(3) equivariant representations with spherical CNNs. arXiv:1711.06721
[172] S. N.Evans and P. B.Stark (2002), ‘Inverse problems as statistics’, Inverse Problems18, R1-R55. · Zbl 1039.62007
[173] V.Faber, A. I.Katsevich and A. G.Ramm (1995), ‘Inversion of cone-beam data and helical tomography’, J. Inverse Ill-Posed Problems3, 429-446. · Zbl 0848.44002
[174] C.Farabet, C.Couprie, L.Najman and Y.LeCun (2013), ‘Learning hierarchical features for scene labeling’, IEEE Trans. Pattern Anal. Mach. Intel.35, 1915-1929.
[175] M. A. T.Figueiredo, R. D.Nowak and S. J.Wright (2007), ‘Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems’, IEEE J. Selected Topics Signal Process.1, 586-598.
[176] C. E.Floyd (1991), ‘An artificial neural network for SPECT image reconstruction’, IEEE Trans. Medical Imaging10, 485-487.
[177] M.Fornasier and H.Rauhut (2008), ‘Iterative thresholding algorithms’, Appl. Comput. Harmon. Anal.25, 187-208. · Zbl 1149.65038
[178] S.Foucart (2016), ‘Dictionary-sparse recovery via thresholding-based algorithms’, J. Funct. Anal. Appl.22, 6-19. · Zbl 1356.42023
[179] S.Foucart and H.Rauhut (2013), A Mathematical Introduction to Compressive Sensing, Applied and Numerical Harmonic Analysis, Birkhäuser. · Zbl 1315.94002
[180] C.Fox and S.Roberts (2012), ‘A tutorial on variational Bayes’, Artif. Intel. Rev.38, 85-95.
[181] J.Franke, R.Lacroix, H.Lehr, M.Heidenreich, U.Heinen and V.Schulz (2017), ‘MPI flow analysis toolbox exploiting pulsed tracer information: An aneurysm phantom proof’, Internat. J. Magnetic Particle Imaging3, 1703020.
[182] D.Freedman (1963), ‘On the asymptotic behavior of Bayes estimates in the discrete case, I’, Ann. Math. Statist.34, 1386-1403. · Zbl 0137.12603
[183] D.Freedman (1965), ‘On the asymptotic behavior of Bayes estimates in the discrete case, II’, Ann. Math. Statist.36, 454-456.
[184] A.Frommer and P.Maass (1999), ‘Fast CG-based methods for Tikhonov-Phillips regularization’, SIAM J. Sci. Comput.20, 1831-1850. · Zbl 0943.65068
[185] L.Fu, T.-C.Lee, S. M.Kim, A. M.Alessio, P. E.Kinahan, Z.Chang, K.Sauer, M. K.Kalra and B. D.Man (2017), ‘Comparison between pre-log and post-log statistical models in ultra-low-dose CT reconstruction’, IEEE Trans. Medical Imaging36, 707-720.
[186] C.Garcia-Cardona and B.Wohlberg (2017), Convolutional dictionary learning. arXiv:1709.02893 · Zbl 1401.94019
[187] M. U.Ghani and W. C.Karl (2018), Deep learning-based sinogram completion for low-dose CT. In 2018 IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP).
[188] S.Ghosal and N.Ray (2017), ‘Deep deformable registration: Enhancing accuracy by fully convolutional neural net’, Pattern Recog. Lett.94, 81-86.
[189] S.Ghosal and A. W.van der Vaart (2017), Fundamentals of Nonparametric Bayesian Inference, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press. · Zbl 1376.62004
[190] S.Ghosal, J. K.Ghosh and R. V.Ramamoorthi (1999), ‘Posterior consistency of dirichlet mixtures in density estimation’, Ann. Statist.27, 143-158. · Zbl 0932.62043
[191] S.Ghosal, J. K.Ghosh and A. W.van der Vaart (2000), ‘Convergence rates of posterior distributions’, Ann. Statist.28, 500-531. · Zbl 1105.62315
[192] G.Gilboa and S.Osher (2008), ‘Nonlocal operators with applications to image processing’, Multiscale Model. Simul.7, 1005-1028. · Zbl 1181.35006
[193] D.Gilton, G.Ongie and R.Willett (2019), Neumann networks for inverse problems in imaging. arXiv:1901.03707
[194] M.Giordano and H.Kekkonen (2018), Bernstein – von Mises theorems and uncertainty quantification for linear inverse problems. arXiv:1811.04058v1 · Zbl 1436.62161
[195] M.Girolami and B.Calderhead (2011), ‘Riemann manifold Langevin and Hamiltonian Monte Carlo methods’, J. Royal Statist. Soc. B73, 123-214. · Zbl 1411.62071
[196] R.Giryes, Y. C.Eldar, A. M.Bronstein and G.Sapiro (2017), Tradeoffs between convergence speed and reconstruction accuracy in inverse problems. arXiv:1605.09232v2 · Zbl 1414.94216
[197] B.Gleich and J.Weizenecker (7046), ‘Tomographic imaging using the nonlinear response of magnetic particles’, Nature435, 1214-1217.
[198] G. H.Golub and C. F.Van Loan (1980), ‘An analysis of the total least squares problem’, SIAM J. Numer. Anal.17, 883-893. · Zbl 0468.65011
[199] G. H.Golub, P. C.Hansen and D. P.O’Leary (1999), ‘Tikhonov regularization and total least squares’, SIAM J. Matrix Anal. Appl.21, 185-194. · Zbl 0945.65042
[200] G. H.Golub, M.Heat and G.Wahba (1979), ‘Generalized cross validation as a method for choosing a good ridge parameter’, Technometrics21, 215-223. · Zbl 0461.62059
[201] A. N.Gomez, M.Ren, R.Urtasun and R. B.Grosse (2017), The reversible residual network: Backpropagation without storing activations. arXiv:1707.04585v1
[202] D.Gong, Z.Zhang, Q.Shi, A.van den Hengel, C.Shen and Y.Zhang (2018), Learning an optimizer for image deconvolution. arXiv:1804.03368v1
[203] I.Goodfellow, J.Pouget-Abadie, M.Mirza, B.Xu, D.Warde-Farley, S.Ozair, A.Courville and Y.Bengio (2014), Generative adversarial nets. In Advances in Neural Information Processing Systems 27 (NIPS 2014) (Z.Ghahramani, eds), Curran Associates, pp. 2672-2680.
[204] B.Gözcü, R. K.Mahabadi, Y.-H.Li, E.Ilcak, T.Çukur, J.Scarlett and V.Cevher (2018), ‘Learning-based compressive MRI’, IEEE Trans. Medical Imaging37, 1394-1406.
[205] M.Grasmair, M.Haltmeier and O.Scherzer (2008), ‘Sparse regularization with <![CDATA \([\ell_q]]\)> penalty term’, Inverse Problems24, 055020. · Zbl 1157.65033
[206] P. J.Green, K.Łatuszysński, M.Pereyra and C. P.Robert (2015), ‘Bayesian computation: A summary of the current state, and samples backwards and forwards’, Statist. Comput.25, 835-862. · Zbl 1331.62017
[207] A.Greenleaf, Y.Kurylev, M.Lassas and G.Uhlmann (2007), ‘Full-wave invisibility of active devices at all frequencies’, Comm. Math. Phys.275, 749-789. · Zbl 1151.78006
[208] K.Gregor and Y.LeCun (2010), Learning fast approximations of sparse coding. In 27th International Conference on Machine Learning (ICML ’10), pp. 399-406.
[209] R.Gribonval and M.Nikolova (2018), On Bayesian estimation and proximity operators. arXiv:1807.04021 · Zbl 1461.62040
[210] S.Gu, L.Zhang, W.Zuo and X.Feng (2014), Weighted nuclear norm minimization with application to image denoising. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), pp. 2862-2869.
[211] S.Gu, W.Zuo, Q.Xie, D.Meng, X.Feng and L.Zhang (2015), Convolutional sparse coding for image super-resolution. In IEEE International Conference on Computer Vision (ICCV 2015), pp. 1823-1831.
[212] S.Gugushvili, A.van der Vaart and D.Yan (2018), Bayesian linear inverse problems in regularity scales. arXiv:1802.08992v1 · Zbl 1422.62139
[213] I.Gulrajani, F.Ahmed, M.Arjovsky, V.Dumoulin and A. C.Courville (2017), Improved training of Wasserstein GANs. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (I.Guyon, eds), Curran Associates, pp. 5767-5777.
[214] Y.Guo, Y.Liu, T.Georgiou and M. S.Lew (2018), ‘A review of semantic segmentation using deep neural networks’, Internat. J. Multimedia Information Retrieval7, 87-93.
[215] H.Gupta, K. H.Jin, H. Q.Nguyen, M. T.McCann and M.Unser (2018), ‘CNN-based projected gradient descent for consistent CT image reconstruction’, IEEE Trans. Medical Imaging37, 1440-1453.
[216] S.Gutta, M.Bhatt, S. K.Kalva, M.Pramanik and P. K.Yalavarthy (2019), ‘Modeling errors compensation with total least squares for limited data photoacoustic tomography’, IEEE J. Selected Topics Quantum Electron.25, 1-14.
[217] E.Haber and L.Ruthotto (2017), ‘Stable architectures for deep neural networks’, Inverse Problems34, 014004. · Zbl 1426.68236
[218] E.Haber and L.Tenorio (2003), ‘Learning regularization functionals’, Inverse Problems19, 611-626. · Zbl 1046.90087
[219] E.Haber, L.Horesh and L.Tenorio (2010), ‘Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems’, Inverse Problems26, 025002. · Zbl 1189.65073
[220] J.Hadamard (1902), ‘Sur les problèmes aux dérivées partielles et leur signification physique’, Princeton University Bulletin49-52.
[221] J.Hadamard (1923), Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press. · JFM 49.0725.04
[222] J.Haegele, J.Rahmer, B.Gleich, J.Borgert, H.Wojtczyk, N.Panagiotopoulos, T.Buzug, J.Barkhausen and F.Vogt (2012), ‘Magnetic particle imaging: Visualization of instruments for cardiovascular intervention’, Radiology265, 933-938.
[223] B. N.Hahn (2015), ‘Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization’, Inverse Probl. Imaging9, 395-413. · Zbl 1332.65193
[224] U.Hämarik, B.Kaltenbacher, U.Kangro and E.Resmerita (2016), ‘Regularization by discretization in Banach spaces’, Inverse Problems32, 035004. · Zbl 1342.65136
[225] K.Hammernik, T.Klatzer, E.Kobler, M. P.Recht, D. K.Sodickson, T.Pock and F.Knoll (2018), ‘Learning a variational network for reconstruction of accelerated MRI data’, Magnetic Reson. Med.79, 3055-3071.
[226] K.Hammernik, F.Knoll, D.Sodickson and T.Pock (2016), Learning a variational model for compressed sensing MRI reconstruction. In Proceedings of the International Society of Magnetic Resonance in Medicine (ISMRM).
[227] Y.Han and J. C.Ye (2018), ‘Framing U-Net via deep convolutional framelets: Application to sparse-view CT’, IEEE Trans. Medical Imaging37, 1418-1429.
[228] M.Hanke-Bourgeois (1995), Conjugate Gradient Type Methods for Ill-Posed Problems, Vol. 327 of Pitman Research Notes in Mathematics, Longman. · Zbl 0830.65043
[229] M.Hanke and P. C.Hansen (1993), ‘Regularization methods for large-scale problems’, Surveys Math. Indust.3, 253-315. · Zbl 0805.65058
[230] P. C.Hansen (1992), ‘Analysis of discrete ill-posed problems by means of the L-curve’, SIAM Review34, 561-580. · Zbl 0770.65026
[231] A.Hauptmann, F.Lucka, M.Betcke, N.Huynh, J.Adler, B.Cox, P.Beard, S.Ourselin and S.Arridge (2018), ‘Model-based learning for accelerated limited-view 3-D photoacoustic tomography’, IEEE Trans. Medical Imaging37, 1382-1393.
[232] B.He and X.Yuan (2012), ‘Convergence analysis of primal – dual algorithms for a saddle-point problem: From contraction perspective’, SIAM J. Imaging Sci.5, 119-149. · Zbl 1250.90066
[233] J.He, Y.Yang, Y.Wang, D.Zeng, Z.Bian, H.Zhang, J.Sun, Z.Xu and J.Ma (2019), ‘Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction’, IEEE Trans. Medical Imaging38, 371-382.
[234] K.He, X.Zhang, S.Ren and J.Sun (2016), Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 770-778.
[235] T.Helin and M.Burger (2015), ‘Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems’, Inverse Problems31, 085009. · Zbl 1325.62058
[236] S. W.Hell, A.Schönle and A.Van den Bos (2007), Nanoscale resolution in far-field fluorescence microscopy. In Science of Microscopy (P. W.Hawkes and J. C. H.Spence, eds), Vol. 2, Springer, pp. 790-834.
[237] C. F.Higham and D. J.Higham (2018), Deep learning: An introduction for applied mathematicians. arXiv:1801.05894 · Zbl 1440.68214
[238] M.Hintermüller and C. N.Rautenberg (2017), ‘Optimal selection of the regularization function in a weighted total variation model, I: Modelling and theory’, J. Math. Imaging Vision59, 498-514. · Zbl 1382.94015
[239] M.Hintermüller and T.Wu (2015), ‘Bilevel optimization for calibrating point spread functions in blind deconvolution’, Inverse Probl. Imaging9, 1139-1169. · Zbl 1343.49023
[240] M.Hintermüller, A.Laurain, C.Löbhard, C. N.Rautenberg and T. M.Surowiec (2014), Elliptic mathematical programs with equilibrium constraints in function space: Optimality conditions and numerical realization. In Trends in PDE Constrained Optimization (G.Leugering, eds), Springer, pp. 133-153. · Zbl 1327.49037
[241] M.Hintermüller, C. N.Rautenberg, T.Wu and A.Langer (2017), ‘Optimal selection of the regularization function in a weighted total variation model, II: Algorithm, its analysis and numerical tests’, J. Math. Imaging Vision59, 515-533. · Zbl 1382.94016
[242] K.Hirakawa and T. W.Parks (2006), ‘Image denoising using total least squares’, IEEE Trans. Image Process.15, 2730-2742.
[243] B.Hofmann (1994), ‘On the degree of ill-posedness for nonlinear problems’, J. Inverse Ill-Posed Problems2, 61-76. · Zbl 0818.35137
[244] B.Hofmann, B.Kaltenbacher, C.Pöschl and O.Scherzer (2007), ‘A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators’, Inverse Problems23, 987. · Zbl 1131.65046
[245] B.Hofmann and S.Kindermann (2010), ‘On the degree of ill-posedness for linear problems with noncompact operators’, Methods Appl. Anal.17, 445-462. · Zbl 1228.47017
[246] T.Hohage and F.Weidling (2016), ‘Characterizations of variational source conditions, converse results, and maxisets of spectral regularization methods’, SIAM J. Numer. Anal.55, 598-620. · Zbl 1432.65070
[247] T.Hohage and F.Werner (2016), ‘Inverse problems with Poisson data: Statistical regularization theory, applications and algorithms’, Inverse Problems32, 093001. · Zbl 1372.65163
[248] X.Hong, Y.Zan, F.Weng, W.Tao, Q.Peng and Q.Huang (2018), ‘Enhancing the image quality via transferred deep residual learning of coarse PET sinograms’, IEEE Trans. Medical Imaging37, 2322-2332.
[249] L.Hörmander (1971), ‘Fourier integral operators, I’, Acta Math.127, 79-183. · Zbl 0212.46601
[250] H.Hornik (1991), ‘Approximation capabilities of multilayer feedforward networks’, Neural Networks4, 251-257.
[251] K.Hornik, M.Stinchcombe and H.White (1989), ‘Multilayer feedforward networks are universal approximators’, Neural Networks2, 359-366. · Zbl 1383.92015
[252] J.-T.Hsieh, S.Zhao, S.Eismann, L.Mirabella and S.Ermon 2019, Learning neural PDE solvers with convergence guarantees. In Seventh International Conference on Learning Representations (ICLR 2019), to appear.
[253] J.Huang and D.Mumford (1999), Statistics of natural images and models. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1999), Vol. 1, pp. 541-547.
[254] Y.Huizhuo, J.Jinzhu and Z.Zhanxing (2018), SIPID: A deep learning framework for sinogram interpolation and image denoising in low-dose CT reconstruction. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1521-1524.
[255] C. M.Hyun, H. P.Kim, S. M.Lee, S.Lee and J. K.Seo (2018), ‘Deep learning for undersampled MRI reconstruction���, Phys. Med. Biol.63, 135007.
[256] M.Igami (2017), Artificial intelligence as structural estimation: Economic interpretations of Deep Blue, Bonanza, and AlphaGo. arXiv:1710.10967 · Zbl 07546371
[257] N.Ikeda and S.Watanabe (1989), Stochastic Differential Equations and Diffusion Processes, second edition, North-Holland. · Zbl 0684.60040
[258] J.Ingraham, A.Riesselman, C.Sander and D.Marks (2019), Learning protein structure with a differentiable simulator. In International Conference on Learning Representations (ICLR 2019).
[259] E.Janssens, J. D.Beenhouwer, M. V.Dael, T. D.Schryver, L. V.Hoorebeke, P.Verboven, B.Nicolai and J.Sijbers (2018), ‘Neural network Hilbert transform based filtered backprojection for fast inline X-ray inspection’, Measurement Sci. Tech.29, 034012.
[260] B.Jin and P.Maass (2012a), ‘An analysis of electrical impedance tomography with applications to Tikhonov regularization’, ESAIM Control Optim. Calc. Var.18, 1027-1048. · Zbl 1259.49056
[261] B.Jin and P.Maass (2012b), ‘Sparsity regularization for parameter identification problems’, Inverse Problems28, 123001. · Zbl 1280.47063
[262] K. H.Jin, M. T.McCann, E.Froustey and M.Unser (2017), ‘Deep convolutional neural network for inverse problems in imaging’, IEEE Trans. Image Process.26, 4509-4522. · Zbl 1409.94275
[263] F.John (1955a), ‘A note on “improper” problems in partial differential equations’, Commun. Pure Appl. Math.8, 591-594. · Zbl 0065.33501
[264] F.John (1955b), ‘Numerical solution of the equation of heat conduction for preceding times’, Ann. Mat. Pura Appl. (4)40, 129-142. · Zbl 0066.10504
[265] F.John (1959), Numerical solution of problems which are not well posed in the sense of Hadamard. In Proc. Rome Symp. Prov. Int. Comp. Center, pp. 103-116. · Zbl 0100.12701
[266] F.John (1960), ‘Continuous dependence on data for solutions of partial differential equations with a prescribed bound’, Commun. Pure Appl. Math.13, 551-585. · Zbl 0097.08101
[267] D. J.Kadrmas (2004), ‘LOR-OSEM: Statistical PET reconstruction from raw line-of-response histograms’, Phys. Med. Biol.49, 4731-4744.
[268] J. P.Kaipio and E.Somersalo (2005), Statistical and Computational Inverse Problems, Vol. 160 of Applied Mathematical Sciences, Springer. · Zbl 1068.65022
[269] J. P.Kaipio and E.Somersalo (2007), ‘Statistical inverse problems: Discretization, model reduction and inverse crimes’, J. Comput. Appl. Math.198, 493-504. · Zbl 1101.65008
[270] O.Kallenberg (2002), Foundations of Modern Probability, second edition, Springer. · Zbl 0996.60001
[271] B.Kaltenbacher, A.Kirchner and B.Vexler (2011), ‘Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems’, Inverse Problems27, 125008. · Zbl 1231.35306
[272] B.Kaltenbacher, A.Neubauer and O.Scherzer (2008), Iterative Regularization Methods for Nonlinear Ill-posed Problems, Vol. 6 of Radon Series on Computational and Applied Mathematics, De Gruyter. · Zbl 1145.65037
[273] E.Kang and J. C.Ye (2018), Framelet denoising for low-dose CT using deep learning. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 311-314.
[274] E.Kang, W.Chang, J.Yoo and J. C.Ye (2018), ‘Deep convolutional framelet denoising for low-dose CT via wavelet residual network’, IEEE Trans. Medical Imaging37, 1358-1369.
[275] E.Kang, J.Min and J. C.Ye (2017), ‘A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction’, Med. Phys.44, 360-375.
[276] A.Karpathy and L.Fei-Fei (2017), ‘Deep visual-semantic alignments for generating image descriptions’, IEEE Trans. Pattern Anal. Mach. Intel.39, 664-676.
[277] K.Kekkonen, M.Lassas and S.Siltanen (2016), ‘Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators’, Inverse Problems32, 085005. · Zbl 1390.35422
[278] A.Khandhar, P.Keselman, S.Kemp, R.Ferguson, P.Goodwill, S.Conolly and K.Krishnan (2017), ‘Evaluation of peg-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging’, Nanoscale9, 1299-1306.
[279] Y.Khoo and L.Ying (2018), SwitchNet: A neural network model for forward and inverse scattering problems. arXiv:1810.09675v1 · Zbl 1425.65208
[280] Y.Khoo, J.Lu and L.Ying (2017). Solving parametric PDE problems with artificial neural networks. arXiv:1707.03351v2 · Zbl 1501.65154
[281] D.Kim and J. A.Fessler (2016), ‘Optimized first-order methods for smooth convex minimization’, Math. Program.159, 81-107. · Zbl 1345.90113
[282] K.Kim, G. E.Fakhri and Q.Li (2017), ‘Low-dose CT reconstruction using spatially encoded nonlocal penalty’, Med. Phys.44, 376-390.
[283] K.Kim, D.Wu, K.Gong, J.Dutta, J. H.Kim, Y. D.Son, H. K.Kim, G. E.Fakhri and Q.Li (2018), ‘Penalized PET reconstruction using deep learning prior and local linear fitting’, IEEE Trans. Medical Imaging37, 1478-1487.
[284] S.-J.Kim, K.Koh, M.Lustig, S.Boyd and D.Gorinevsky (2007), ‘An interior-point method for large-scale <![CDATA \([\ell_1]]\)>-regularized least squares’, IEEE J. Selected Topics Signal Process.1, 606-617.
[285] S.Kindermann (2011), ‘Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems’, Electron. Trans. Numer. Anal.38, 233-257. · Zbl 1287.65043
[286] A.Kirsch (2011), An Introduction to the Mathematical Theory of Inverse Problems, Vol. 120 of Applied Mathematical Sciences, second edition, Springer. · Zbl 1213.35004
[287] T.Klatzer and T.Pock (2015), Continuous hyper-parameter learning for support vector machines. In 20th Computer Vision Winter Workshop (CVWW).
[288] B. J. K.Kleijn and Y. Y.Zhao (2018), Criteria for posterior consistency. arXiv:1308.1263v5
[289] T.Kluth (2018), ‘Mathematical models for magnetic particle imaging’, Inverse Problems34, 083001. · Zbl 1395.78271
[290] T.Kluth and P.Maass (2017), ‘Model uncertainty in magnetic particle imaging: Nonlinear problem formulation and model-based sparse reconstruction’, Internat. J. Magnetic Particle Imaging3, 1707004.
[291] B. T.Knapik, B. T.Szabó, A. W.van der Vaart and J. H.van Zanten (2016), ‘Bayes procedures for adaptive inference in inverse problems for the white noise model’, Probab. Theory Related Fields164, 771-813. · Zbl 1334.62039
[292] B. T.Knapik, A. W.van der Vaart and J. H.van Zanten (2011), ‘Bayesian inverse problems with Gaussian priors’, Ann. Statist.39, 2626-2657. · Zbl 1232.62079
[293] B. T.Knapik, A. W.van der Vaart and J. H.van Zanten (2013), ‘Bayesian recovery of the initial condition for the heat equation’, Commun. Statist. Theory Methods42, 1294-1313. · Zbl 1347.62057
[294] T.Knopp, N.Gdaniec and M.Möddel (2017), ‘Magnetic particle imaging: From proof of principle to preclinical applications’, Phys. Med. Biol.62, R124.
[295] T.Knopp, T.Viereck, G.Bringout, M.Ahlborg, J.Rahmer and M.Hofmann (2016), MDF: Magnetic particle imaging data format. arXiv:1602.06072
[296] S.Ko, D.Yu and J.-H.Won (2017), On a class of first-order primal – dual algorithms for composite convex minimization problems. arXiv:1702.06234
[297] E.Kobler, T.Klatzer, K.Hammernik and T.Pock (2017), Variational networks: connecting variational methods and deep learning. In German Conference on Pattern Recognition (GCPR 2017), Vol. 10496 of Lecture Notes in Computer Science, Springer, pp. 281-293.
[298] F.Kokkinos and S.Lefkimmiatis (2018), Deep image demosaicking using a cascade of convolutional residual denoising networks. arXiv:1803.05215
[299] V.Kolehmainen, M.Lassas, K.Niinimäki and S.Siltanen (2012), ‘Sparsity-promoting Bayesian inversion’, Inverse Problems28, 025005. · Zbl 1233.62046
[300] V. P.Krishnan and E. T.Quinto (2015), Microlocal Analysis in Tomography, Handbook of Mathematical Methods in Imaging, Springer. · Zbl 1395.94042
[301] A.Küçükelbir, R.Ranganath, A.Gelman and D.Blei (2017), ‘Automatic variational inference’, J. Mach. Learn. Res.18, 430-474. · Zbl 1437.62109
[302] J.Kukačka, V.Golkov and D.Cremers (2017), Regularization for deep learning: A taxonomy. arXiv:1710.10686
[303] K.Kunisch and T.Pock (2013), ‘A bilevel optimization approach for parameter learning in variational models’, SIAM J. Imaging Sci.6, 938-983. · Zbl 1280.49053
[304] H.Kushner and G.Yin (1997), Stochastic Approximation Algorithms and Applications, Springer. · Zbl 0914.60006
[305] G.Kutyniok and D.Labate (2009), ‘Resolution of the wavefront set using continuous shearlets’, Trans. Amer. Math. Soc.361, 2719-2754. · Zbl 1169.42012
[306] G.Kutyniok and D.Labate (2012), Shearlets: Multiscale Analysis for Multivariate Data, Springer. · Zbl 1237.42001
[307] R. R.Lam, L.Horesh, H.Avron and K. E.Willcox (2017), Should you derive, or let the data drive? An optimization framework for hybrid first-principles data-driven modeling. arXiv:1711.04374
[308] F.Lanusse, J.-L.Starck, A.Woiselle and J. M.Fadili (2014), ‘3-D sparse representations’, Adv. Imaging Electron Phys.183, 99-204.
[309] A.Lanza, S.Morigi, F.Sgallari and Y.-W.Wen (2014), ‘Image restoration with Poisson-Gaussian mixed noise’, Comput. Methods Biomech. Biomed. Engng Imaging Vis.2, 12-24.
[310] M.Lassas, E.Saksman and S.Siltanen (2009), ‘Discretization invariant Bayesian inversion and Besov space priors’, Inverse Probl. Imaging3, 87-122. · Zbl 1191.62046
[311] P.Latafat and P.Patrinos (2017), ‘Asymmetric forward – backward – adjoint splitting for solving monotone inclusions involving three operators’, Comput. Optim. Appl.68, 57-93. · Zbl 1406.90129
[312] R.Lattès and J.-L.Lions (1969), The Method of Quasi-Reversibility: Applications to Partial Differential Equations, Vol. 18 of Modern Analytic and Computational Methods in Science and Mathematics, American Elsevier. · Zbl 1220.65002
[313] L.Le Cam (1986), Asymptotic Methods in Statistical Decision Theory, Springer Series in Statistics, Springer. · Zbl 0605.62002
[314] Y.LeCun, Y.Bengio and G.Hinton (2015), ‘Deep learning’, Nature521(7553), 436-444.
[315] D.Lee, J.Yoo and J. C.Ye (2017), Deep residual learning for compressed sensing MRI. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 15-18.
[316] H.Lee, J.Lee, H.Kim, B.Cho and S.Cho (2019), ‘Deep-neural-network based sinogram synthesis for sparse-view CT image reconstruction’, IEEE Trans. Radiation Plasma Med. Sci.3, 109-119.
[317] S.Lefkimmiatis (2017), Non-local color image denoising with convolutional neural networks. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 3587-3596.
[318] M. S.Lehtinen, L.Päivärinta and E.Somersalo (1989), ‘Linear inverse problems for generalised random variables’, Inverse Problems5, 599-612. · Zbl 0681.60015
[319] C. Y.Li, X.Liang, Z.Hu and E. P.Xing (2018a), Hybrid retrieval-generation reinforced agent for medical image report generation. arXiv:1805.08298
[320] H.Li, J.Schwab, S.Antholzer and M.Haltmeier (2018b), NETT: Solving inverse problems with deep neural networks. arXiv:1803.00092 · Zbl 1456.65038
[321] H.Li, Z.Xu, G.Taylor and T.Goldstein (2018c), Visualizing the loss landscape of neural nets. In 6th International Conference on Learning Representations (ICLR 2018).
[322] F.Liese and K.-J.Miescke (2008), Statistical Decision Theory: Estimation, Testing, and Selection, Springer Series in Statistics, Springer. · Zbl 1154.62008
[323] R.Liu, Z.Lin, W.Zhang and Z.Su (2010), Learning PDEs for image restoration via optimal control. In European Conference on Computer Vision (ECCV 2010), Vol. 6311 of Lecture Notes in Computer Science, Springer, pp. 115-128.
[324] Z.Long, Y.Lu, X.Ma and B.Dong (2018), PDE-Net: Learning PDEs from data. arXiv:1710.09668v2
[325] A. K.Louis (1989), Inverse und schlecht gestellte Probleme, Vieweg/Teubner. · Zbl 0667.65045
[326] A. K.Louis (1996), ‘Approximate inverse for linear and some nonlinear problems’, Inverse Problems12, 175-190. · Zbl 0851.65036
[327] A. K.Louis (2011), ‘Feature reconstruction in inverse problems’, Inverse Problems27, 065010. · Zbl 1229.47141
[328] A. K.Louis and P.Maass (1990), ‘A mollifier method for linear operator equations of the first kind’, Inverse Problems6, 427. · Zbl 0713.65040
[329] S.Lu, S. V.Pereverzev and U.Tautenhahn (2009), ‘Regularized total least squares: computational aspects and error bounds’, SIAM J. Matrix Anal. Appl.31, 918-941. · Zbl 1198.65094
[330] A.Lucas, M.Iliadis, R.Molina and A. K.Katsaggelos (2018), ‘Using deep neural networks for inverse problems in imaging: Beyond analytical methods’, IEEE Signal Process. Mag.35, 20-36.
[331] S.Lunz, O.Öktem and C.-B.Schönlieb (2018), Adversarial regularizers in inverse problems. In Advances in Neural Information Processing Systems 31 (NIPS 2018) (S.Bengio, eds), Curran Associates, pp. 8507-8516.
[332] Z.-Q.Luo, J.-S.Pang and D.Ralph (1996), Mathematical programs with equilibrium constraints, Cambridge University Press.
[333] P.Maass (2019), Deep learning for trivial inverse problems. In Compressed Sensing and its Applications, Birkhäuser. · Zbl 1496.68287
[334] J.Mairal and J.Ponce (2014), Sparse modeling for image and vision processing. arXiv:1411.3230v2 · Zbl 1333.68263
[335] J.Mairal, F.Bach, J.Ponce and G.Sapiro (2010), ‘Online learning for matrix factorization and sparse coding’, J. Mach. Learn. Res.11, 19-60. · Zbl 1242.62087
[336] S.Mallat (2009), A Wavelet Tour of Signal Processing: The Sparse Way, third edition, Academic Press. · Zbl 1170.94003
[337] S.Mallat (2012), ‘Group invariant scattering’, Commun. Pure Appl. Math.65, 1331-1398. · Zbl 1282.47009
[338] S.Mallat (2016), ‘Understanding deep convolutional networks’, Philos. Trans. Royal Soc. A374, 20150203.
[339] S. G.Mallat and Z.Zhang (1993), ‘Matching pursuits with time-frequency dictionaries’, IEEE Trans. Signal Process.41, 3397-3415. · Zbl 0842.94004
[340] A.Mandelbaum (1984), ‘Linear estimators and measurable linear transformations on a Hilbert space’, Z. Wahrsch. verw. Gebiete65, 385-397. · Zbl 0506.60004
[341] X.Mao, Q.Li, H.Xie, R. Y.Lau, Z.Wang and S. P.Smolley (2016), Least squares generative adversarial networks. arXiv:1611.04076
[342] M.Mardani, E.Gong, J. Y.Cheng, J.Pauly and L.Xing (2017a), Recurrent generative adversarial neural networks for compressive imaging. In IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2017).
[343] M.Mardani, E.Gong, J. Y.Cheng, S.Vasanawala, G.Zaharchuk, M.Alley, N.Thakur, S.Han, W.Dally, J. M.Pauly and L.Xing (2017b), Deep generative adversarial networks for compressed sensing (GANCS) automates MRI. arXiv:1706.00051
[344] M.Markkanen, L.Roininen, J. M. J.Huttunen and S.Lasanen (2019), ‘Cauchy difference priors for edge-preserving Bayesian inversion’, J. Inverse Ill-Posed Problems27, 225-240. · Zbl 1417.49049
[345] I.Markovsky and S.Van Huffel (2007), ‘Overview of total least-squares methods’, Signal Processing87, 2283-2302. · Zbl 1186.94229
[346] J.Martens and I.Sutskever (2012), Training deep and recurrent networks with Hessian-free optimization. In Neural Networks: Tricks of the Trade, Vol. 7700 of Lecture Notes in Computer Science, Springer, pp. 479-535.
[347] D.Martin, C.Fowlkes, D.Tal and J.Malik (2001), A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In 8th International Conference on Computer Vision (ICCV 2001), Vol. 2, pp. 416-423.
[348] M. T.McCann and M.Unser (2019), Algorithms for biomedical image reconstruction. arXiv:1901.03565 · Zbl 1431.92003
[349] M. T.McCann, K. H.Jin and M.Unser (2017), ‘Convolutional neural networks for inverse problems in imaging: A review’, IEEE Signal Process. Mag.34, 85-95.
[350] T.Meinhardt, M.Moeller, C.Hazirbas and D.Cremers (2017), Learning proximal operators: Using denoising networks for regularizing inverse imaging problems. In IEEE International Conference on Computer Vision (ICCV 2017), pp. 1799-1808.
[351] K.Miller (1970), ‘Least squares methods for ill-posed problems with a prescribed bound’, SIAM J. Math. Anal.1, 52-74. · Zbl 0214.14804
[352] D. D. L.Minh and D.Le Minh (2015), ‘Understanding the Hastings algorithm’, Commun. Statist. Simul. Comput.44, 332-349. · Zbl 1316.65004
[353] T.Minka (2001), Expectation propagation for approximate Bayesian inference. In 17th Conference on Uncertainty in Artificial Intelligence (UAI ’01) (J. S.Breese and D.Koller, eds), Morgan Kaufmann, pp. 362-369.
[354] F.Monard, R.Nickl and G. P.Paternain (2019), ‘Efficient nonparametric Bayesian inference for X-ray transforms’, Ann. Statist.47, 1113-1147. · Zbl 1417.62060
[355] N.Moriakov, K.Michielsen, J.Adler, R.Mann, I.Sechopoulos and J.Teuwen (2018), Deep learning framework for digital breast tomosynthesis reconstruction. arXiv:1808.04640
[356] V. A.Morozov (1966), ‘On the solution of functional equations by the method of regularization’, Soviet Math. Doklady7, 414-417. · Zbl 0187.12203
[357] A.Mousavi and R. G.Baraniuk (2017), Learning to invert: Signal recovery via deep convolutional networks. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2272-2276.
[358] J. L.Mueller and S.Siltanen (2012), Linear and Nonlinear Inverse Problems with Practical Applications, SIAM. · Zbl 1262.65124
[359] D.Mumford and J.Shah (1989), ‘Optimal approximations by piecewise smooth functions and associated variational problems’, Commun. Pure Appl. Math.42, 577-685. · Zbl 0691.49036
[360] K.Murase, M.Aoki, N.Banura, K.Nishimoto, A.Mimura, T.Kuboyabu and I.Yabata (2015), ‘Usefulness of magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia’, Open J. Medical Imaging5, 85.
[361] F.Natterer (1977), ‘Regularisierung schlecht gestellter Probleme durch Projektionsverfahren’, Numer. Math.28, 329-341. · Zbl 0364.65042
[362] F.Natterer (2001), The Mathematics of Computerized Tomography, Vol. 32 of Classics in Applied Mathematics, SIAM. · Zbl 0973.92020
[363] F.Natterer and F.Wübbeling (2001), Mathematical Methods in Image Reconstruction, SIAM. · Zbl 0974.92016
[364] R. M.Neal (2003), ‘Slice sampling’, Ann. Statist.31, 705-767. · Zbl 1051.65007
[365] D.Needell and J. A.Tropp (2009), ‘CoSaMP: iterative signal recovery from incomplete and inaccurate samples’, Appl. Comput. Harmon. Anal.26, 301-321. · Zbl 1163.94003
[366] D.Needell and R.Vershynin (2009), ‘Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit’, Found. Comput. Math.9, 317-334. · Zbl 1183.68739
[367] Y.Nesterov (2004), Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87 of Applied Optimization, Springer. · Zbl 1086.90045
[368] Y.Nesterov (2007), Gradient methods for minimizing composite objective function. CORE Discussion Papers no. 2007076, Center for Operations Research and Econometrics (CORE), Université Catholique de Louvain.
[369] A.Neubauer and H. K.Pikkarainen (2008), ‘Convergence results for the Bayesian inversion theory’, J. Inverse Ill-Posed Problems16, 601-613. · Zbl 1284.60012
[370] R.Nickl (2013), Statistical Theory, Lecture notes, University of Cambridge. http://www.statslab.cam.ac.uk/˜nickl/Site/_files/stat2013.pdf
[371] R.Nickl (2017a), ‘Bernstein – von Mises theorems for statistical inverse problems, I: Schrödinger equation,’ J. Eur. Math. Soc., to appear. arXiv:1707.01764
[372] R.Nickl (2017b), ‘On Bayesian inference for some statistical inverse problems with partial differential equations’, Bernoulli News24, 5-9.
[373] R.Nickl and J.Söhl (2017), ‘Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions’, Ann. Statist.45, 1664-1693. · Zbl 1411.62087
[374] R.Nickl, S.van de Geer and S.Wang (2018), Convergence rates for penalised least squares estimators in PDE-constrained regression problems. arXiv:1809.08818 · Zbl 1436.62163
[375] L.Nie and X.Chen (2014), ‘Structural and functional photoacoustic molecular tomography aided by emerging contrast agents’, Chem. Soc. Review43, 7132-70.
[376] J.Nocedal and S.Wright (2006), Numerical Optimization, Springer Series in Operations Research and Financial Engineering, Springer. · Zbl 1104.65059
[377] C.Oh, D.Kim, J.-Y.Chung, Y.Han and H. W.Park (2018), ETER-net: End to end MR image reconstruction using recurrent neural network. In International Workshop on Machine Learning for Medical Image Reconstruction (MLMIR 2018) (F.Knoll, eds), Vol. 11074 of Lecture Notes in Computer Science, Springer.
[378] B. A.Olshausen and D. J.Field (1997), ‘Sparse coding with an overcomplete basis set: A strategy employed by V1?’, Vision Research37, 3311-3325.
[379] J. V.Outrata (2000), ‘A generalized mathematical program with equilibrium constraints’, SIAM J. Control Optim.38, 1623-1638. · Zbl 0968.49012
[380] S.Oymak and M.Soltanolkotabi (2017), ‘Fast and reliable parameter estimation from nonlinear observations’, SIAM J. Optim.27, 2276-2300. · Zbl 1373.90120
[381] V.Papyan, Y.Romano and M.Elad (2017), ‘Convolutional neural networks analysed via convolutional sparse coding’, J. Mach. Learn. Res.18, 1-52. · Zbl 1434.68444
[382] V.Papyan, J.Sulam and M.Elad (2016a), Working locally thinking globally, I: Theoretical guarantees for convolutional sparse coding. arXiv:1607.02005 · Zbl 1414.94462
[383] V.Papyan, J.Sulam and M.Elad (2016b), Working locally thinking globally, II: Stability and algorithms for convolutional sparse coding. arXiv:1607.02009 · Zbl 1414.94462
[384] P.Paschalis, N. D.Giokaris, A.Karabarbounis, G. K.Loudos, D.Maintas, C. N.Papanicolas, V.Spanoudaki, C.Tsoumpas and E.Stiliaris (2004), ‘Tomographic image reconstruction using artificial neural networks’, Nucl. Instrum. Methods Phys. Res. A527, 211-215.
[385] D. M.Pelt and K. J.Batenburg (2013), ‘Fast tomographic reconstruction from limited data using artificial neural networks’, IEEE Trans. Image Process.22, 5238-5251.
[386] D. M.Pelt, K. J.Batenburg and J. A.Sethian (2018), ‘Improving tomographic reconstruction from limited data using mixed-scale dense convolutional neural networks’, J. Imaging4, 128.
[387] P.Perona and J.Malik (1990), ‘Scale-space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intel.12, 629-639.
[388] G.Peyré, S.Bougleux and L. D.Cohen (2011), ‘Non-local regularization of inverse problems’, Inverse Probl. Imaging5, 511-530. · Zbl 1223.68116
[389] D. L.Phillips (1962), ‘A technique for the numerical solution of certain integral equations of the first kind’, J. Assoc. Comput. Mach.9, 84-97. · Zbl 0108.29902
[390] L.Plantagie and J. K.Batenburg (2015), ‘Algebraic filter approach for fast approximation of nonlinear tomographic reconstruction methods’, J. Electron. Imaging24, 013026. · Zbl 1373.94039
[391] R.Plato and G.Vainikko (1990), ‘On the regularization of projection methods for solving ill-posed problems’, Numer. Math.57, 63-79. · Zbl 0675.65053
[392] Y.Pu, X.Yuan, A.Stevens, C.Li and L.Carin (2016), A deep generative deconvolutional image model. In 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016), pp. 741-750.
[393] P.Putzky and M.Welling (2017), Recurrent inference machines for solving inverse problems. arXiv:1706.04008
[394] C.Qin, J.Schlemper, J.Caballero, A. N.Price, J. V.Hajnal and D.Rueckert (2019), ‘Convolutional recurrent neural networks for dynamic MR image reconstruction’, IEEE Trans. Medical Imaging38, 280-290.
[395] T. M.Quan, S.Member, T.Nguyen-Duc and W.-K.Jeong (2018), ‘Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss’, IEEE Trans. Medical Imaging37, 1488-1497.
[396] E. T.Quinto (1993), ‘Singularities of the X-ray transform and limited data tomography in <![CDATA \([\mathbb{R}^2]]\)> and <![CDATA \([\mathbb{R}^3]]\)>’, SIAM J. Math. Anal.24, 1215-1225. · Zbl 0784.44002
[397] E. T.Quinto and O.Öktem (2008), ‘Local tomography in electron microscopy’, SIAM J. Appl. Math.68, 1282-1303. · Zbl 1153.65121
[398] J.Radon (1917), ‘Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten’, Ber. Verh. Sächs. Akad. Wiss. (Leipzig)69, 262-277. · JFM 46.0436.02
[399] M.Raissi and G. E.Karniadakis (2017), Hidden physics models: Machine learning of nonlinear partial differential equations. arXiv:1708.00588v2 · Zbl 1381.68248
[400] R.Ranftl and T.Pock (2014), A deep variational model for image segmentation. In 36th German Conference on Pattern Recognition (GCPR 2014), Vol. 8753 of Lecture Notes in Computer Science, Springer, pp. 107-118.
[401] K.Ray (2013), ‘Bayesian inverse problems with non-conjugate priors’, Electron. J. Statist.7, 2516-2549. · Zbl 1294.62107
[402] E. T.Reehorst and P.Schniter (2018), Regularization by denoising: Clarifications and new interpretations. arXiv:1806.02296
[403] A.Repetti, M.Pereyra and Y.Wiaux (2019), ‘Scalable Bayesian uncertainty quantification in imaging inverse problems via convex optimization’, SIAM J. Imaging Sci.12, 87-118. · Zbl 1429.94022
[404] W.Ring (2000), ‘Structural properties of solutions to total variation regularization problems’, ESAIM Math. Model. Numer. Anal.34, 799-810. · Zbl 1018.49021
[405] S.Rizzo, F.Botta, S.Raimondi, D.Origgi, C.Fanciullo, A. G.Morganti and M.Bellomi (2018), ‘Radiomics: The facts and the challenges of image analysis’, European Radiol. Exp.2, 36.
[406] G.Rizzuti, A.Siahkoohi and F. J.Herrmann (2019), Learned iterative solvers for the Helmholtz equation. Submitted to 81st EAGE Conference and Exhibition 2019. Available from https://www.slim.eos.ubc.ca/content/learned-iterative-solvers-helmholtz-equation
[407] H.Robbins and S.Monro (1951), ‘A stochastic approximation method’, Ann. Math. Statist.22, 400-407. · Zbl 0054.05901
[408] C. P.Robert and G.Casella (2004), Monte Carlo Statistical Methods, Springer Texts in Statistics, Springer. · Zbl 1096.62003
[409] R. T.Rockafellar and R. J.-B.Wets (1998), Variational Analysis, Springer. · Zbl 0888.49001
[410] Y.Romano and M.Elad (2015), Patch-disagreement as a way to improve K-SVD denoising. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1280-1284.
[411] Y.Romano, M.Elad and P.Milanfar (2017a), ‘The little engine that could: Regularization by denoising (RED)’, SIAM J. Imaging Sci.10, 1804-1844. · Zbl 1401.62101
[412] Y.Romano, J.Isidoro and P.Milanfar (2017b), ‘RAISR: Rapid and accurate image super resolution’, IEEE Trans. Comput. Imaging3, 110-125.
[413] O.Ronneberger, P.Fischer and T.Brox (2015), U-Net: Convolutional networks for biomedical image segmentation. In 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015) (N.Navab, eds), Vol. 9351 of Lecture Notes in Computer Science, Springer, pp. 234-241.
[414] S.Roth and M. J.Black (2005), Fields of experts: A framework for learning image priors. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Vol. 2, pp. 860-867.
[415] R.Rubinstein, A. M.Bruckstein and M.Elad. (2010), ‘Dictionaries for sparse representation modeling’, Proc. IEEE98, 1045-1057.
[416] S.Ruder (2016), An overview of gradient descent optimization algorithms. arXiv:1609.04747
[417] L. I.Rudin, S.Osher and E.Fatemi (1992), ‘Nonlinear total variation based noise removal algorithms’, Phys. D60, 259-268. · Zbl 0780.49028
[418] D. E.Rumelhart, G. E.Hinton and R. J.Williams (1986), Learning internal representation by error propagation. In Parallel distributed processing: Explorations in the Microstructures of Cognition, Vol. 1: Foundations (D. E.Rumelhart, J. L.McClelland and the PDP Research Group, eds), MIT Press, pp. 318-362.
[419] L.Ruthotto and E.Haber (2018), Deep neural networks motivated by partial differential equations. arXiv:1804.04272 · Zbl 1426.68236
[420] J.Salamon, M.Hofmann, C.Jung, M. G.Kaul, F.Werner, K.Them, R.Reimer, P.Nielsen, A.vom Scheidt, G.Adam, T.Knopp and H.Ittrich (2016), ‘Magnetic particle/magnetic resonance imaging: In-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach’, PloS ONE11, e0156899.
[421] K. G.Samuel and M. F.Tappen (2009), Learning optimized map estimates in continuously-valued MRF models. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 477-484.
[422] M.Sato (1971), Regularity of hyperfunctions solutions of partial differential equations. In Actes du Congrès International des Mathématiciens, Vol. 2, Gauthier-Villars, pp. 785-794. · Zbl 0232.35004
[423] A.Sawatzky, C.Brune, J.Müller and M.Burger (2009), Total variation processing of images with Poisson statistics. In Computer Analysis of Images and Patterns (X.Jiang and N.Petkov, eds), Vol. 5702 of Lecture Notes in Computer Science, Springer, pp. 533-540.
[424] M. J.Schervish (1995), Theory of Statistics, Springer Series in Statistics, Springer. · Zbl 0834.62002
[425] O.Scherzer (1998), ‘A modified Landweber iteration for solving parameter estimation problems’, Appl. Math. Optim.38, 45-68. · Zbl 0915.65054
[426] O.Scherzer, M.Grasmair, H.Grossauer, M.Haltmeier and F.Lenzen (2009), Variational Methods in Imaging, Vol. 167 of Applied Mathematical Sciences, Springer. · Zbl 1177.68245
[427] J.Schlemper, J.Caballero, J. V.Hajnal, A.Price and D.Rueckert (2017), A deep cascade of convolutional neural networks for MR image reconstruction. In 25th International Conference on Information Processing in Medical Imaging (IPMI 2017), Vol. 10265 of Lecture Notes in Computer Science, Springer, pp. 647-658.
[428] J.Schlemper, J.Caballero, J. V.Hajnal, A. N.Price and D.Rueckert (2018), ‘A deep cascade of convolutional neural networks for dynamic MR image reconstruction’, IEEE Trans. Medical Imaging37, 491-503.
[429] U.Schmidt and S.Roth (2014), Shrinkage fields for effective image restoration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), pp. 2774-2781.
[430] U.Schmitt and A. K.Louis (2002), ‘Efficient algorithms for the regularization of dynamic inverse problems, I: Theory’, Inverse Problems18, 645-658. · Zbl 1003.65049
[431] T.Schuster (2007), The Method of Approximate Inverse: Theory and Applications, Vol. 1906 of Lecture Notes in Mathematics, Springer. · Zbl 1171.65001
[432] T.Schuster, B.Hahn and M.Burger (2018), ‘Dynamic inverse problems: Modelling – regularization – numerics [Preface]’, Inverse Problems34, 040301. · Zbl 1395.00048
[433] T.Schuster, B.Kaltenbacher, B.Hofmann and K.Kazimierski (2012), Regularization Methods in Banach Spaces, Radon Series on Computational and Applied Mathematics, De Gruyter. · Zbl 1259.65087
[434] J.Schwab, S.Antholzer and M.Haltmeier (2018), Deep null space learning for inverse problems: Convergence analysis and rates. arXiv:1806.06137 · Zbl 1491.65039
[435] L.Schwartz (1965), ‘On Bayes procedures’, Z. Wahrsch. verw. Gebiete4, 10-26. · Zbl 0158.17606
[436] T. I.Seidman and C. R.Vogel (1989), ‘Well-posedness and convergence of some regularisation methods for nonlinear ill posed problems’, Inverse Problems5, 227-238. · Zbl 0691.35090
[437] P.Sermanet, D.Eigen, X.Zhang, M.Mathieu, R.Fergus and Y.LeCun (2013), OverFeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229
[438] S.-S.Shai and B.-D.Shai (2014), Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press. · Zbl 1305.68005
[439] H.Shan, Y.Zhang, Q.Yang, U.Kruger, M. K.Kalra, L.Sun, W.Cong and G.Wang (2018), ‘3-D convolutional encoder – decoder network for low-dose CT via transfer learning from a 2-D trained network’, IEEE Trans. Medical Imaging37, 1522-1534.
[440] J.Sirignano and K.Spiliopoulos (2017), DGM: A deep learning algorithm for solving partial differential equations. arXiv:1708.07469v1 · Zbl 1416.65394
[441] B.Sprungk (2017), Numerical methods for Bayesian inference in Hilbert spaces. PhD thesis, Technische Universität Chemnitz.
[442] H.Sreter and R.Giryes (2017), Learned convolutional sparse coding. arXiv:1711.00328
[443] R. L.Streit (2010), Poisson Point Processes: Imaging, Tracking, and Sensing, Springer.
[444] D. M.Strong and T. F.Chan (1996), Exact solutions to total variation regularization problems. In UCLA CAM Report, Citeseer.
[445] A. M.Stuart (2010), Inverse problems: A Bayesian perspective. In Acta Numerica, Vol. 19, Cambridge University Press, pp. 451-559. · Zbl 1242.65142
[446] A. M.Stuart and A. L.Teckentrup (2018), ‘Posterior consistency for Gaussian process approximations of Bayesian posterior distributions’, Math. Comp.87, 721-753. · Zbl 1429.60040
[447] J.Sulam and M.Elad (2015), Expected patch log likelihood with a sparse prior. In Energy Minimization Methods in Computer Vision and Pattern Recognition: Proceedings of the 10th International Conference (EMMCVPR 2015), pp. 99-111.
[448] J.Sulam, V.Papyan, Y.Romano and M.Elad (2017), Multi-layer convolutional sparse modeling: Pursuit and dictionary learning. arXiv:1708.08705 · Zbl 1415.94241
[449] N.-S.Syu, Y.-S.Chen and Y.-Y.Chuang (2018), Learning deep convolutional networks for demosaicing. arXiv:1802.03769
[450] B. T.Szabó, A. W.van der Vaart and J. H.van Zanten (2013), ‘Empirical Bayes scaling of Gaussian priors in the white noise model’, Electron. J. Statist.7, 991-1018. · Zbl 1336.62039
[451] C.Szegedy, W.Zaremb, I.Sutskever, J.Bruna, D.Erhan, I.Goodfellow and R.Fergus (2014), Intriguing properties of neural networks. arXiv:1312.6199v4
[452] M. F.Tappen (2007), Utilizing variational optimization to learn Markov random fields. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1-8.
[453] A.Tarantola (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, second edition, SIAM. · Zbl 1074.65013
[454] A.Tarantola and B.Valette (1982), ‘Inverse Problems = Quest for Information’, J. Geophys50, 159-170.
[455] S.Tariyal, A.Majumdar, R.Singh and M.Vatsa (2016), ‘Deep dictionary learning’, IEEE Access4, 10096-10109.
[456] U.Tautenhahn (2008), ‘Regularization of linear ill-posed problems with noisy right hand side and noisy operator’, J. Inverse Ill-Posed Problems16, 507-523. · Zbl 1153.65054
[457] A.Taylor, J.Hendrickx and F.Glineur (2017), ‘Smooth strongly convex interpolation and exact worst-case performance of first-order methods’, Math. Program.161, 307-345. · Zbl 1359.90098
[458] M.Thoma (2016), A survey of semantic segmentation. arXiv:1602.06541
[459] R.Tibshirani (1996), ‘Regression shrinkage and selection via the Lasso’, J. Royal Statist. Soc. B58, 267-288. · Zbl 0850.62538
[460] A. N.Tikhonov (1943), ‘On the stability of inverse problems’, Dokl. Akad. Nauk SSSR39, 195-198.
[461] A. N.Tikhonov (1963), ‘Solution of incorrectly formulated problems and the regularization method’, Dokl. Akad. Nauk.151, 1035-1038. · Zbl 0141.11001
[462] A. N.Tikhonov and V. Y.Arsenin (1977), Solutions of Ill-Posed Problems, Winston. · Zbl 0354.65028
[463] J.Tompson, K.Schlachter, P.Sprechmann and K.Perlin (2017), Accelerating Eulerian fluid simulation with convolutional networks. arXiv:1607.03597v6
[464] A.Traverso, L.Wee, A.Dekker and R.Gillies (2018), ‘Repeatability and reproducibility of radiomic features: A systematic review’, Imaging Radiation Oncology102, 1143-1158.
[465] J. A.Tropp and A. C.Gilbert (2007), ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inform. Theory53, 4655-4666. · Zbl 1288.94022
[466] G.Uhlmann and A.Vasy (2012), ‘The inverse problem for the local geodesic X-ray transform’, Inventio. Math.205, 83-120. · Zbl 1350.53098
[467] D.Ulyanov, A.Vedaldi and V.Lempitsky (2018), Deep image prior. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 9446-9454.
[468] M.Unser and T.Blu (2000), ‘Fractional splines and wavelets’, SIAM Review42, 43-67. · Zbl 0940.41004
[469] K.Valluru, K.Wilson and J.Willmann (2016), ‘Photoacoustic imaging in oncology: Translational preclinical and early clinical experience’, Radiology280, 332-349.
[470] C.Van Chung, J.De los Reyes and C.-B.Schönlieb (2017), ‘Learning optimal spatially-dependent regularization parameters in total variation image denoising’, Inverse Problems33, 074005. · Zbl 1371.49018
[471] D.Van Veen, A.Jalal, E.Price, S.Vishwanath and A. G.Dimakis (2018), Compressed sensing with deep image prior and learned regularization. arXiv:1806.06438
[472] Y.Vardi, L.Shepp and L.Kaufman (1985), ‘A statistical model for positron emission tomography’, J. Amer. Statist. Assoc.80(389), 8-20. · Zbl 0561.62094
[473] B. S.Veeling, J.Linmans, J.Winkens, T.Cohen and M.Welling (2018), Rotation equivariant CNNs for digital pathology. arXiv:1806.03962
[474] S. V.Venkatakrishnan, C. A.Bouman and B.Wohlberg (2013), Plug-and-play priors for model based reconstruction. In IEEE Global Conference on Signal and Information Processing (GlobalSIP 2013), pp. 945-948.
[475] R.Vidal, J.Bruna, R.Giryes and S.Soatto (2017), Mathematics of deep learning. arXiv:1712.04741
[476] C.Villani (2009), Optimal Transport: Old and New, Vol. 338 of Grundlehren der mathematischen Wissenschaften, Springer. · Zbl 1156.53003
[477] C.Viroli and G. J.McLachlan (2017), Deep Gaussian mixture models. arXiv:1711.06929 · Zbl 1430.62143
[478] C.Vogel and T.Pock (2017), A primal dual network for low-level vision problems. In GCPR 2017: Pattern Recognition (V.Roth and T.Vetter, eds), Vol. 10496 of Lecture Notes in Computer Science, Springer, pp. 189-202.
[479] G.Wang, J. C.Ye, K.Mueller and J. A.Fessler (2018), ‘Image reconstruction is a new frontier of machine learning’, IEEE Trans. Medical Imaging37, 1289-1296.
[480] L. V.Wang (2009), ‘Multiscale photoacoustic microscopy and computed tomography’, Nature Photonics3, 503-509.
[481] S.Wang, Z.Su, L.Ying, X.Peng, S.Zhu, F.Liang, D.Feng and D.Liang (2016), Accelerating magnetic resonance imaging via deep learning. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514-517.
[482] Y.Wang and D. M.Blei (2017), Frequentist consistency of variational Bayes. arXiv:1705.03439 · Zbl 1428.62119
[483] Z.Wang, A. C.Bovik, H. R.Sheikh and E. P.Simoncelli (2004), ‘Image quality assessment: From error visibility to structural similarity’, IEEE Trans. Image Process.13, 600-612.
[484] J.Weickert (1998), Anisotropic Diffusion in Image Processing, ECMI series, Teubner. · Zbl 0886.68131
[485] M.Weiler, M.Geiger, M.Welling, W.Boomsma and T.Cohen (2018), 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. arXiv:1807.02547
[486] J.Weizenecker, B.Gleich, J.Rahmer, H.Dahnke and J.Borgert (2009), ‘Three-dimensional real-time in vivo magnetic particle imaging’, Phys. Med. Biol.54, L1-L10.
[487] M.Welling and Y. W.Teh (2011), Bayesian learning via stochastic gradient Langevin dynamics. In 28th International Conference on Machine Learning (ICML ’11), pp. 681-688.
[488] M.Welling, S.Osindero and G. E.Hinton (2003), Learning sparse topographic representations with products of Student-t distributions. In 15th International Conference on Neural Information Processing Systems (NIPS ’02), MIT Press, pp. 1383-1390.
[489] B.Wohlberg (2014), Efficient convolutional sparse coding. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7173-7177.
[490] J. M.Wolterink, A. M.Dinkla, M. H. F.Savenije, P. R.Seevinck, C. A. T.van den Berg and I.Išgum (2017), Deep MR to CT synthesis using unpaired data. In Simulation and Synthesis in Medical Imaging SASHIMI 2017 (S.Tsaftaris, eds), Vol. 10557 of Lecture Notes in Computer Science, Springer, pp. 14-23.
[491] Y.Wu, P.Zhang, H.Shen and H.Zhai (2018), Visualizing neural network developing perturbation theory. arXiv:1802.03930v2
[492] D.Wu, K.Kim and Q.Li (2018a), Computationally efficient cascaded training for deep unrolled network in CT imaging. arXiv:1810.03999v2
[493] D.Wu, K.Kim, G. E.Fakhri and Q.Li (2017), ‘Iterative low-dose CT reconstruction with priors trained by artificial neural network’, IEEE Trans. Medical Imaging36, 2479-2486.
[494] T.Würfl, M.Hoffmann, V.Christlein, K.Breininger, Y.Huang, M.Unberath and A. K.Maier (2018), ‘Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems’, IEEE Trans. Medical Imaging37, 1454-1463.
[495] J.Xia and L. V.Wang (2014), ‘Small-animal whole-body photoacoustic tomography: A review’, IEEE Trans. Biomedical Engng61, 1380-1389.
[496] J.Xie, L.Xu and E.Chen (2012), Image denoising and inpainting with deep neural networks. In Advances in Neural Information Processing Systems 25 (NIPS 2012) (F.Pereira, eds), Curran Associates, pp. 341-349.
[497] Q.Xu, H.Yu, X.Mou, L.Zhang, J.Hsieh and G.Wang (2012), ‘Low-dose X-ray CT reconstruction via dictionary learning’, IEEE Trans. Medical Imaging31, 1682-1697.
[498] B.Yang, L.Ying and J.Tang (2018a), ‘Artificial neural network enhanced bayesian PET image reconstruction’, IEEE Trans. Medical Imaging37, 1297-1309.
[499] G.Yang, S.Yu, H.Dong, G.Slabaugh, P. L.Dragotti, X.Ye, F.Liu, S.Arridge, J.Keegan, Y.Guo and D.Firmin (2018b), ‘DAGAN: Deep De-Aliasing Generative Adversarial Networks for fast compressed sensing MRI reconstruction’, IEEE Trans. Medical Imaging37, 1310-1321.
[500] Q.Yang, P.Yan, Y.Zhang, H.Yu, Y.Shi, X.Mou, M. K.Kalra, Y.Zhang, L.Sun and G.Wang (2018c), ‘Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss’, IEEE Trans. Medical Imaging37, 1348-1357.
[501] X.Yang, R.Kwitt, M.Styner and M.Niethammer (2017), ‘Quicksilver: Fast predictive image registration: A deep learning approach’, NeuroImage158, 378-396.
[502] Y.Yang, J.Sun, H.Li and Z.Xu (2016), Deep ADMM-Net for compressive sensing MRI. In Advances in Neural Information Processing Systems 29 (NIPS 2016) (D. D.Lee, eds), Curran Associates, pp. 10-18.
[503] J. C.Ye, Y. S.Han and E.Cha (2018), ‘Deep convolutional framelets: A general deep learning for inverse problems’, SIAM J. Imaging Sci.11, 991-1048. · Zbl 1401.94024
[504] S.Ye, S.Ravishankar, Y.Long and J. A.Fessler (2018b), SPULTRA: Low-dose CT image reconstruction with joint statistical and learned image models. arXiv:1808.08791v2
[505] J.Yoo, S.Sabir, D.Heo, K. H.Kim, A.Wahab, Y.Choi, S.-I.Lee, E. Y.Chae, H. H.Kim, Y. M.Bae, Y.-W.Choi, S.Cho and J. C.Ye (2017), Deep learning can reverse photon migration for diffuse optical tomography. arXiv:1712.00912
[506] C.You, G.Li, Y.Zhang, X.Zhang, H.Shan, S.Ju, Z.Zhao, Z.Zhang, W.Cong, M. W.Vannier, P. K.Saha and G.Wang (2018a), CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). arXiv:1808.04256v3
[507] C.You, Q.Yang, H.Shan, L.Gjesteby, G.Li, S.Ju, Z.Zhang, Z.Zhao, Y.Zhang, W.Cong and G.Wang (2018b), ‘Structurally-sensitive multi-scale deep neural network for low-dose CT denoising’, IEEE Access6, 41839-41855.
[508] J.You and G. L.Zeng (2007), ‘Hilbert transform based FBP algorithm for fan-beam CT full and partial scans’, IEEE Trans. Medical Imaging26, 190-199.
[509] E. Y.Yu, M.Bishop, B.Zheng, R. M.Ferguson, A. P.Khandhar, S. J.Kemp, K. M.Krishnan, P. W.Goodwill and S. M.Conolly (2017), ‘Magnetic particle imaging: A novel in vivo imaging platform for cancer detection’, Nano Letters17, 1648-1654.
[510] M. D.Zeiler, D.Krishnan, G. W.Taylor and R.Fergus (2010), Deconvolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 2528-2535.
[511] C.Zhang, T.Zhang, M.Li, C.Peng, Z.Liu and J.Zheng (2016), ‘Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares’, BioMed. Engng OnLine15, 66.
[512] Y.Zhang and H.Yu (2018), ‘Convolutional neural network based metal artifact reduction in X-ray computed tomography’, IEEE Trans. Medical Imaging37, 1370-1381.
[513] Z.Zhang, X.Liang, X.Dong, Y.Xie and G.Cao (2018), ‘A sparse-view CT reconstruction method based on combination of densenet and deconvolution’, IEEE Trans. Medical Imaging37, 1407-1417.
[514] C.Zhao, J.Zhang, R.Wang and W.Gao (2018a), ‘CREAM: CNN-REgularized ADMM framework for compressive-sensed image reconstruction’, IEEE Access6, 76838-76853.
[515] J.Zhao, Z.Chen, L.Zhang and X.Jin (2016), Few-view CT reconstruction method based on deep learning. In 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD).
[516] R.Zhao, Y.Hu, J.Dotzel, C. D.Sa and Z.Zhang (2018), Building efficient deep neural networks with unitary group convolutions. arXiv:1811.07755
[517] X.Zheng, S.Ravishankar, Y.Long and J. A.Fessler (2018), ‘PWLS-ULTRA: An efficient clustering and learning-based approach for low-dose 3D CT image reconstruction’, IEEE Trans. Medical Imaging37, 1498-1510.
[518] Y.Zhou, J.Yao and L. V.Wang (2016), ‘Tutorial on photoacoustic tomography’, J. Biomedical Optics21, 061007.
[519] B.Zhu, J. Z.Liu, S. F.Cauley, B. R.Rosen and M. S.Rosen (2018), ‘Image reconstruction by domain-transform manifold learning’, Nature555, 487-492.
[520] H.Zhu, G.Leus and G. B.Giannakis (2011), ‘Sparsity-cognizant total least-squares for perturbed compressive sampling’, IEEE Trans. Signal Process.59, 2002-2016. · Zbl 1392.94741
[521] S. C.Zhu, Y.Wu and D.Mumford (1998), ‘Filters, random fields and maximum entropy (frame): Towards a unified theory for texture modeling’, Internat. J. Comput. Vision27, 107-126.
[522] D.Zoran and Y.Weiss (2011), From learning models of natural image patches to whole image restoration. In IEEE International Conference on Computer Vision (ICCV 2011), pp. 479-486.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.