×

Generalized modes in Bayesian inverse problems. (English) Zbl 1430.62053

Summary: Uncertainty quantification requires efficient summarization of high- or even infinite-dimensional (i.e., nonparametric) distributions based on, e.g., suitable point estimates (modes) for posterior distributions arising from model-specific prior distributions. In this work, we consider nonparametric modes and maximum a posteriori (MAP) estimates for priors that do not admit continuous densities, for which previous approaches based on small ball probabilities fail. We propose a novel definition of generalized modes based on the concept of approximating sequences, which reduce to the classical mode in certain situations that include Gaussian priors but also exist for a more general class of priors. The latter includes the case of priors that impose strict bounds on the admissible parameters and in particular of uniform priors. For uniform priors defined by random series with uniformly distributed coefficients, we show that generalized MAP estimates – but not classical MAP estimates – can be characterized as minimizers of a suitable functional that plays the role of a generalized Onsager-Machlup functional. This is then used to show consistency of nonlinear Bayesian inverse problems with uniform priors and Gaussian noise.

MSC:

62F15 Bayesian inference
62G99 Nonparametric inference

References:

[1] S. Agapiou, M. Burger, M. Dashti, and T. Helin, Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems, Inverse Problems, 34 (2018), 045002, https://doi.org/10.1088/1361-6420/aaacac. · Zbl 06866427
[2] J. Beck, B. M. Dia, L. F. R. Espath, Q. Long, and R. Tempone, Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain, Comput. Methods Appl. Mech. Engrg., 334 (2018), pp. 523-553, https://doi.org/10.1016/j.cma.2018.01.053. · Zbl 1440.62293
[3] A. Björn, J. Björn, and J. Lehrbäck, The annular decay property and capacity estimates for thin annuli, Collect. Math., 68 (2017), pp. 229-241, https://doi.org/10.1007/s13348-016-0178-y. · Zbl 1375.31017
[4] V. I. Bogachev, Gaussian Measures, Math. Surveys Monogr. 62, AMS, Providence, RI, 1998, https://doi.org/10.1090/surv/062. · Zbl 0913.60035
[5] V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, Math. Surveys Monogr. 164, AMS, Providence, RI, 2010, https://doi.org/10.1090/surv/164. · Zbl 1247.28001
[6] M. Burger and F. Lucka, Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators, Inverse Problems, 30 (2014), 114004, https://doi.org/10.1088/0266-5611/30/11/114004. · Zbl 1302.62010
[7] D. Calvetti and E. Somersalo, Hypermodels in the Bayesian imaging framework, Inverse Problems, 24 (2008), 034013, https://doi.org/10.1088/0266-5611/24/3/034013. · Zbl 1137.62062
[8] P. Chen, U. Villa, and O. Ghattas, Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems, Comput. Methods Appl. Mech. Engrg., 327 (2017), pp. 147-172, https://doi.org/10.1016/j.cma.2017.08.016. · Zbl 1439.65071
[9] C. Clason, Nonsmooth Analysis and Optimization, , 2017.
[10] C. Clason and A. Klassen, Quasi-solution of linear inverse problems in non-reflexive Banach spaces, J. Inverse Ill-Posed Problems, 26 (2018), pp. 689-702, https://doi.org/10.1515/jiip-2018-0026. · Zbl 1490.65109
[11] S. L. Cotter, M. Dashti, and A. M. Stuart, Approximation of Bayesian inverse problems for PDEs, SIAM J. Numer. Anal., 48 (2010), pp. 322-345, https://doi.org/10.1137/090770734. · Zbl 1210.35284
[12] M. Dashti, K. J. Law, A. M. Stuart, and J. Voss, MAP estimators and their consistency in Bayesian nonparametric inverse problems, Inverse Problems, 29 (2013), 095017, https://doi.org/10.1088/0266-5611/29/9/095017. · Zbl 1281.62089
[13] M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, in Handbook of Uncertainty Quantification, R. Ghanem, D. Higdon, and H. Owhadi, eds., Springer, Cham, 2017, pp. 311-428, https://doi.org/10.1007/978-3-319-12385-1_7.
[14] M. M. Dunlop and A. M. Stuart, MAP estimators for piecewise continuous inversion, Inverse Problems, 32 (2016), 105003, https://doi.org/10.1088/0266-5611/32/10/105003. · Zbl 1354.65112
[15] J. N. Franklin, Well-posed stochastic extensions of ill-posed linear problems, J. Math. Anal. Appl., 31 (1970), pp. 682-716, https://doi.org/10.1016/0022-247X(70)90017-X. · Zbl 0198.20601
[16] T. Helin and M. Burger, Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems, Inverse Problems, 31 (2015), 085009, https://doi.org/10.1088/0266-5611/31/8/085009. · Zbl 1325.62058
[17] V. K. Ivanov, On linear problems which are not well-posed, Dokl. Akad. Nauk SSSR, 145 (1962), pp. 270-272. · Zbl 0201.46701
[18] V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-posed Problems and Its Applications, VSP, Utrecht, 2002, https://doi.org/10.1515/9783110944822. · Zbl 1037.65056
[19] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer, New York, 2006, https://doi.org/10.1007/b138659. · Zbl 1068.65022
[20] J. P. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, Inverse problems with structural prior information, Inverse Problems, 15 (1999), p. 713, https://doi.org/10.1088/0266-5611/15/4/501. · Zbl 0949.65144
[21] B. Kaltenbacher and A. Klassen, On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic PDEs, Inverse Problems, 34 (2018), 055008, https://doi.org/10.1088/1361-6420/aab739. · Zbl 1415.65128
[22] A. Klenke, Probability Theory: A Comprehensive Course, 2nd ed., Springer, New York, 2014, https://doi.org/10.1007/978-1-4471-5361-0. · Zbl 1295.60001
[23] V. Kolehmainen, M. Lassas, K. Niinimäki, and S. Siltanen, Sparsity-promoting Bayesian inversion, Inverse Problems, 28 (2012), 025005, https://doi.org/10.1088/0266-5611/28/2/025005. · Zbl 1233.62046
[24] S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions, Inverse Problems Imaging, 6 (2012), pp. 215-266, https://doi.org/10.3934/ipi.2012.6.215. · Zbl 1263.62041
[25] M. Lassas, E. Saksman, and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse Problems Imaging, 3 (2009), pp. 87-122, https://doi.org/10.3934/ipi.2009.3.87. · Zbl 1191.62046
[26] M. A. Lifshits, Gaussian Random Functions, Kluwer, Dordrecht, 1995, https://doi.org/10.1007/978-94-015-8474-6. · Zbl 0832.60002
[27] D. Lorenz and N. Worliczek, Necessary conditions for variational regularization schemes, Inverse Problems, 29 (2013), 075016, https://doi.org/10.1088/0266-5611/29/7/075016. · Zbl 1283.65055
[28] Y. Lu, A. Stuart, and H. Weber, Gaussian approximations for probability measures on \(\mathbb{R}^d\), SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1136-1165, https://doi.org/10.1137/16M1105384. · Zbl 1390.60022
[29] Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys., 228 (2009), pp. 1862-1902, https://doi.org/10.1016/j.jcp.2008.11.024. · Zbl 1161.65308
[30] Y. M. Marzouk, H. N. Najm, and L. A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224 (2007), pp. 560-586, https://doi.org/10.1016/j.jcp.2006.10.010. · Zbl 1120.65306
[31] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, Comput. Sci. Eng. 10, SIAM, Philadelphia, 2012, https://doi.org/10.1137/1.9781611972344. · Zbl 1262.65124
[32] A. Neubauer and R. Ramlau, On convergence rates for quasi-solutions of ill-posed problems, Electron. Trans. Numer. Anal., 41 (2014), pp. 81-92, http://etna.math.kent.edu/volumes/2011-2020/vol41/ abstract.php?vol=41&pages=81-92. · Zbl 1294.47019
[33] M. Pereyra, Revisiting maximum-a-posteriori estimation in log-concave models, SIAM J. Imaging Sci., 12 (2019), pp. 650-670, https://doi.org/10.1137/18M1174076.
[34] N. Petra, J. Martin, G. Stadler, and O. Ghattas, A computational framework for infinite-dimensional Bayesian inverse problems, Part II: Stochastic Newton MCMC with application to ice sheet flow inverse problems, SIAM J. Sci. Comput., 36 (2014), pp. A1525-A1555, https://doi.org/10.1137/130934805. · Zbl 1303.35110
[35] C. Schillings and C. Schwab, Scaling limits in computational Bayesian inversion, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1825-1856, https://doi.org/10.1051/m2an/2016005. · Zbl 1358.65013
[36] C. Schwab and A. M. Stuart, Sparse deterministic approximation of Bayesian inverse problems, Inverse Problems, 28 (2012), 045003, https://doi.org/10.1088/0266-5611/28/4/045003. · Zbl 1236.62014
[37] A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), pp. 451-559, https://doi.org/10.1017/S0962492910000061. · Zbl 1242.65142
[38] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005, https://doi.org/10.1137/1.9780898717921. · Zbl 1074.65013
[39] L. Tierney and J. B. Kadane, Accurate approximations for posterior moments and marginal densities, J. Amer. Statist. Assoc., 81 (1986), pp. 82-86, https://doi.org/10.1080/01621459.1986.10478240. · Zbl 0587.62067
[40] J. Wang and N. Zabaras, Hierarchical Bayesian models for inverse problems in heat conduction, Inverse Problems, 21 (2004), pp. 183-206, https://doi.org/10.1088/0266-5611/21/1/012. · Zbl 1060.62036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.