×

Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov-Fokker-Planck equation. (English) Zbl 1397.35024

Summary: In this paper, we study Landau damping in the weakly collisional limit of a Vlasov-Fokker-Planck equation with nonlinear collisions in the phase-space \((x,v) \in \mathbb {T}_x^n \times {\mathbb {R}}^n_v\). The goal is four-fold: (A) to understand how collisions suppress plasma echoes and enable Landau damping in agreement with linearized theory in Sobolev spaces, (B) to understand how phase mixing accelerates collisional relaxation, (C) to understand better how the plasma returns to global equilibrium during Landau damping, and (D) to rule out that collision-driven nonlinear instabilities dominate. We give an estimate for the scaling law between Knudsen number and the maximal size of the perturbation necessary for linear theory to be accurate in Sobolev regularity. We conjecture this scaling to be sharp (up to logarithmic corrections) due to potential nonlinear echoes in the collisionless model.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
35B34 Resonance in context of PDEs
35Q83 Vlasov equations
35Q84 Fokker-Planck equations

References:

[1] Alexandre, R; Morimoto, Y; Ukai, S; Xu, C-J; Yang, T, Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198, 39-123, (2010) · Zbl 1257.76099 · doi:10.1007/s00205-010-0290-1
[2] Alinhac, S, The null condition for quasilinear wave equations in two space dimensions i, Invent. Math., 145, 597-618, (2001) · Zbl 1112.35341 · doi:10.1007/s002220100165
[3] Baggett, J; Driscoll, T; Trefethen, L, A mostly linear model of transition of turbulence, Phys. Fluids, 7, 833-838, (1995) · Zbl 1039.76509 · doi:10.1063/1.868606
[4] Bardos, C; Nouri, A, A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., 53, 115621, (2012) · Zbl 1457.82405 · doi:10.1063/1.4765338
[5] Beck, M; Wayne, CE, Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier-Stokes equations, Proc. R. Soc. of Edinb. Sect. A Math., 143, 905-927, (2013) · Zbl 1296.35114 · doi:10.1017/S0308210511001478
[6] Bedrossian, J.: Nonlinear echoes and Landau damping with insufficient regularity. arXiv:1605.06841 (2016) · Zbl 1333.76095
[7] Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow I: below threshold. arXiv:1506.03720 (2015) · Zbl 1364.35211
[8] Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow II: above threshold. arXiv:1506.03721 (2015)
[9] Bedrossian, J; Germain, P; Masmoudi, N, On the stability threshold for the 3D Couette flow in Sobolev regularity, Ann. Math., 185, 541-608, (2017) · Zbl 1366.35113 · doi:10.4007/annals.2017.185.2.4
[10] Bedrossian, J; Masmoudi, N, Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations, Publications mathématiques de l’IHÉS, 122, 195-300, (2015) · Zbl 1375.35340 · doi:10.1007/s10240-015-0070-4
[11] Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping in finite regularity for unconfined systems with screened interactions. Commun. Pure Appl. Math. (2016) (To appear) · Zbl 1384.35127
[12] Bedrossian, J; Masmoudi, N; Mouhot, C, Landau damping: paraproducts and Gevrey regularity, Ann. PDE, 2, 1-71, (2016) · Zbl 1402.35058 · doi:10.1007/s40818-016-0008-2
[13] Bedrossian, J; Masmoudi, N; Vicol, V, Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the 2D Couette flow, Arch. Ration. Mech. Anal., 216, 1087-1159, (2016) · Zbl 1339.35208 · doi:10.1007/s00205-015-0917-3
[14] Bedrossian, J., Vicol, V., Wang, F.: The Sobolev stability threshold for 2D shear flows near Couette. J. Nonlinear Sci. 1-25 (2016) · Zbl 1403.35228
[15] Bedrossian, J; Coti Zelati, M, Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows, Arch. Ration. Mech. Anal., 224, 1161-1204, (2017) · Zbl 1371.35213 · doi:10.1007/s00205-017-1099-y
[16] Boyd, T.J.M., Sanderson, J.J.: The Physics of Plasmas. Cambridge University Press, Cambridge (2003) · Zbl 1079.82017 · doi:10.1017/CBO9780511755750
[17] Caglioti, E; Maffei, C, Time asymptotics for solutions of Vlasov-Poisson equation in a circle, J. Stat. Phys., 92, 301-323, (1998) · Zbl 0935.35116 · doi:10.1023/A:1023055905124
[18] Callen, J, Coulomb collision effects on linear Landau damping, Phys. Plasmas, 21, 052106, (2014) · doi:10.1063/1.4875726
[19] Chen, H; Li, W-X; Xu, C-J, Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations, J. Differ. Equ., 246, 320-339, (2009) · Zbl 1162.35016 · doi:10.1016/j.jde.2008.05.019
[20] Chen, Y; Desvillettes, L; He, L, Smoothing effects for classical solutions of the full Landau equation, Arch. Ration. Mech. Anal., 193, 21-55, (2009) · Zbl 1169.76064 · doi:10.1007/s00205-009-0223-z
[21] Constantin, P; Kiselev, A; Ryzhik, L; Zlatoš, A, Diffusion and mixing in fluid flow, Ann. Math., 2, 643-674, (2008) · Zbl 1180.35084 · doi:10.4007/annals.2008.168.643
[22] Desvillettes, L; Villani, C, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159, 245-316, (2005) · Zbl 1162.82316 · doi:10.1007/s00222-004-0389-9
[23] Dubrulle, B; Nazarenko, S, On scaling laws for the transition to turbulence in uniform-shear flows, Europhys. Lett., 27, 129, (1994) · doi:10.1209/0295-5075/27/2/009
[24] Gallay, T; Wayne, E, Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on \({\mathbb{R}}^2\), Arch. Ration. Mech. Anal., 163, 209-258, (2002) · Zbl 1042.37058 · doi:10.1007/s002050200200
[25] Goldston, R.J., Rutherford, P.H.: Introduction to Plasma Physics. CRC Press, Boca Raton (1995) · Zbl 1045.82001 · doi:10.1201/9781439822074
[26] Golse, F; Lions, P-L; Perthame, B; Sentis, R, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76, 110-125, (1988) · Zbl 0652.47031 · doi:10.1016/0022-1236(88)90051-1
[27] Golse, F; Perthame, B; Sentis, R, Un résultat de compacité pour LES équations de transport et application au calcul de la limite de la valeur propre principale dun opérateur de transport, C. R. Acad. Sci. Paris Sér. I Math., 301, 341-344, (1985) · Zbl 0591.45007
[28] Guo, Y, The Landau equation in a periodic box, Commun. Math. Phys., 231, 391-434, (2002) · Zbl 1042.76053 · doi:10.1007/s00220-002-0729-9
[29] Guo, Y, The Vlasov-Poisson-Landau system in a periodic box, J. Am. Math. Soc., 25, 759-812, (2012) · Zbl 1251.35167 · doi:10.1090/S0894-0347-2011-00722-4
[30] Han-Kwan, D., Rousset, F.: Quasineutral limit for Vlasov-Poisson with Penrose stable data. arXiv preprint arXiv:1508.07600 (2015) · Zbl 1361.35179
[31] Hwang, HJ; Velaźquez, JJL, On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem, Indiana Univ. Math. J., 58, 2623-2660, (2009) · Zbl 1193.35229 · doi:10.1512/iumj.2009.58.3835
[32] Jabin, P-E; Vega, L, A real space method for averaging lemmas, J. Math. Pures Appl., 83, 1309-1351, (2004) · Zbl 1082.35043 · doi:10.1016/j.matpur.2004.03.004
[33] Johnston, GL, Dominant effects of Coulomb collisions on maintenance of Landau damping, Phys. Fluids, 14, 2719-2726, (1971) · doi:10.1063/1.1693397
[34] Kelvin, L, Stability of fluid motion—rectilinear motion of viscous fluid between two parallel plates, Philos. Mag., 24, 188, (1887) · doi:10.1080/14786448708628078
[35] Landau, L, On the vibration of the electronic plasma, J. Phys. USSR, 10, 25-34, (1946) · Zbl 0063.03439
[36] Latini, M; Bernoff, A, Transient anomalous diffusion in Poiseuille flow, J. Fluid Mech., 441, 399-411, (2001) · Zbl 1008.76086 · doi:10.1017/S0022112001004906
[37] Lenard, A; Bernstein, IB, Plasma oscillations with diffusion in velocity space, Phys. Rev., 112, 1456, (1958) · Zbl 0082.45301 · doi:10.1103/PhysRev.112.1456
[38] Malmberg, J; Wharton, C, Collisionless damping of electrostatic plasma waves, Phys. Rev. Lett., 13, 184-186, (1964) · doi:10.1103/PhysRevLett.13.184
[39] Malmberg, J; Wharton, C; Gould, C; O’Neil, T, Plasma wave echo, Phys. Rev. Lett., 20, 95-97, (1968) · doi:10.1103/PhysRevLett.20.95
[40] Mouhot, C; Villani, C, On Landau damping, Acta Math., 207, 29-201, (2011) · Zbl 1239.82017 · doi:10.1007/s11511-011-0068-9
[41] Ng, C; Bhattacharjee, A; Skiff, F, Kinetic eigenmodes and discrete spectrum of plasma oscillations in a weakly collisional plasma, Phys. Rev. Lett., 83, 1974, (1999) · doi:10.1103/PhysRevLett.83.1974
[42] Ng, C; Bhattacharjee, A; Skiff, F, Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: new results on old problems a, Phys. Plasmas, 13, 055903, (2006) · doi:10.1063/1.2186187
[43] O’Neil, TM, Effect of Coulomb collisions and microturbulence on the plasma wave echo, Phys. Fluids, 11, 2420-2425, (1968) · Zbl 0174.56103 · doi:10.1063/1.1691832
[44] Orr, W, The stability or instability of steady motions of a perfect liquid and of a viscous liquid, part I: a perfect liquid, Proc. R. Irish Acad. Sect. A Math. Phys. Sci., 27, 9-68, (1907) · JFM 38.0741.02
[45] Penrose, O, Electrostatic instability of a uniform non-Maxwellian plasma, Phys. Fluids, 3, 258-265, (1960) · Zbl 0090.22801 · doi:10.1063/1.1706024
[46] Perthame, B; Souganidis, PE, A limiting case for velocity averaging, Annales scientifiques de l’Ecole normale supérieure, 31, 591-598, (1998) · Zbl 0956.45010 · doi:10.1016/S0012-9593(98)80108-0
[47] Reddy, S; Schmid, P; Baggett, J; Henningson, D, On stability of streamwise streaks and transition thresholds in plane channel flows, J. Fluid Mech., 365, 269-303, (1998) · Zbl 0927.76029 · doi:10.1017/S0022112098001323
[48] Rhines, P; Young, W, How rapidly is a passive scalar mixed within closed streamlines?, J. Fluid Mech., 133, 133-145, (1983) · Zbl 0576.76088 · doi:10.1017/S0022112083001822
[49] Ryutov, D, Landau damping: half a century with the great discovery, Plasma Phys. Control. Fusion, 41, a1, (1999) · doi:10.1088/0741-3335/41/3A/001
[50] Short, R; Simon, A, Damping of perturbations in weakly collisional plasmas, Phys. Plasmas, 9, 3245-3253, (2002) · doi:10.1063/1.1492805
[51] Stix, T.: Waves in Plasmas. Springer, Berlin (1992)
[52] Su, C; Oberman, C, Collisional damping of a plasma echo, Phys. Rev. Lett., 20, 427, (1968) · doi:10.1103/PhysRevLett.20.427
[53] Trefethen, LN; Trefethen, AE; Reddy, SC; Driscoll, TA, Hydrodynamic stability without eigenvalues, Science, 261, 578-584, (1993) · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[54] Tristani, I.: Landau damping for the linearized Vlasov Poisson equation in a weakly collisional regime. arXiv:1603.07219 (2016) · Zbl 1379.35317
[55] Vanneste, J, Nonlinear dynamics of anisotropic disturbances in plane Couette flow, SIAM J. Appl. Math., 62, 924-944, (2002) · Zbl 1035.76021 · doi:10.1137/S0036139900381420
[56] Vanneste, J; Morrison, P; Warn, T, Strong echo effect and nonlinear transient growth in shear flows, Phys. Fluids, 10, 1398, (1998) · doi:10.1063/1.869664
[57] Vukadinovic, J; Dedits, E; Poje, AC; Schäfer, T, Averaging and spectral properties for the 2D advection-diffusion equation in the semi-classical limit for vanishing diffusivity, Phys. D, 310, 1-18, (2015) · Zbl 1364.35211 · doi:10.1016/j.physd.2015.07.011
[58] Young, B, Landau damping in relativistic plasmas, J. Math. Phys., 57, 021502, (2016) · Zbl 1333.76095 · doi:10.1063/1.4939275
[59] Yu, J; Driscoll, C, Diocotron wave echoes in a pure electron plasma, IEEE Trans. Plasma Sci., 30, 24-25, (2002) · doi:10.1109/TPS.2002.1003905
[60] Yu, J; Driscoll, C; O’Neil, T, Phase mixing and echoes in a pure electron plasma, Phys. Plasmas, 12, 055701, (2005) · doi:10.1063/1.1885006
[61] Zlatoš, A, Diffusion in fluid flow: dissipation enhancement by flows in 2D, Commun. Part. Differ. Equ., 35, 496-534, (2010) · Zbl 1201.35106 · doi:10.1080/03605300903362546
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.