×

Landau damping in relativistic plasmas. (English) Zbl 1333.76095

Summary: We examine the phenomenon of Landau damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson (rVP) system on the torus for initial data sufficiently close to a spatially uniform steady state. We find that if the steady state is regular enough (essentially in a Gevrey class of degree in a specified range) and if the deviation of the initial data from this steady state is small enough in a certain norm, the evolution of the system is such that its spatial density approaches a uniform constant value quasi-exponentially fast (i.e., like \(\exp(- C \left|t\right|^{\overline{\nu}})\; \text{for}\; \overline{\nu} \in(0, 1)\)). We take as a priori assumptions that solutions launched by such initial data exist for all times (by no means guaranteed with rVP, but a reasonable assumption since we are close to a spatially uniform state) and that the various norms in question are continuous in time (which should be a consequence of an abstract version of the Cauchy-Kovalevskaya theorem). In addition, we must assume a kind of “reverse Poincaré inequality” on the Fourier transform of the solution. In spirit, this assumption amounts to the requirement that there exists \(0 < \kappa < 1\) so that the mass in the annulus \(\chi \leq \left|v\right| < 1\) for the solution launched by the initial data is uniformly small for all \(t\). Typical velocity bounds for solutions to rVP launched by small initial data (at least on \(\mathbb{R}^{6})\) imply this bound. We note that none of our results require spherical symmetry (a crucial assumption for many current results on rVP).{
©2016 American Institute of Physics}

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
35Q83 Vlasov equations
35F40 Initial value problems for systems of linear first-order PDEs

References:

[1] Bedrossian, J., Masmoudi, N., and Mouhot, C., “Landau damping: Paraproducts and gevrey regularity,” e-print . · Zbl 1402.35058
[2] Glassey, R.; Pankavich, S.; Schaeffer, J., On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinet. Relat. Models, 2, 3, 465-488 (2009) · Zbl 1189.35026 · doi:10.3934/krm.2009.2.465
[3] Glassey, R.; Pankavich, S.; Schaeffer, J., Large time behavior of the relativistic Vlasov Maxwell system in low space dimension, Differ. Integr. Equations, 23, 1-2, 61-77 (2010) · Zbl 1240.35549
[4] Glassey, R.; Schaeffer, J., On symmetric solutions of the relativistic Vlasov-Poisson system, Commun. Math. Phys., 101, 459-473 (1985) · Zbl 0582.35110 · doi:10.1007/BF01210740
[5] Glassey, R.; Schaeffer, J., Time decay for solutions to the linearized Vlasov equation, Transp. Theory Stat. Phys., 23, 3, 411-453 (1994) · Zbl 0819.35114 · doi:10.1080/00411459408203873
[6] Gripenberg, G.; Londen, S.-O.; Staffans, O., Volterra Integral and Functional Equations, 34 (1990) · Zbl 0695.45002
[7] Hadžić, M.; Rein, G., Global existence and nonlinear stability for the relativistic Vlasov-Poisson system in the gravitational case, Indiana Univ. Math. J., 56, 2453-2488 (2007) · Zbl 1133.35011 · doi:10.1512/iumj.2007.56.3064
[8] Horst, E., Symmetric plasmas and their decay, Commun. Math. Phys., 126, 613-633 (1990) · Zbl 0694.76049 · doi:10.1007/BF02125703
[9] Kiessling, M. K.-H.; Tahvildar-Zadeh, A. S., On the relativistic Vlasov-Poisson system, Indiana Univ. Math. J., 57, 7, 3177-3207 (2008) · Zbl 1173.35008 · doi:10.1512/iumj.2008.57.3387
[10] Landau, L., On the vibrations of the electronic plasma, J. Phys. USSR, 10, 25-34 (1946) · Zbl 0063.03439
[11] Lemou, M.; Méhats, F.; Raphaël, P., On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov-Poisson system, Arch. Ration. Mech. Anal., 189, 3, 425-468 (2008) · Zbl 1221.35417 · doi:10.1007/s00205-008-0126-4
[12] Lemou, M.; Méhats, F.; Raphaël, P., Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system, J. Am. Math. Soc., 21, 1019-1063 (2008) · Zbl 1206.82092 · doi:10.1090/S0894-0347-07-00579-6
[13] Mouhot, C.; Villani, C., On Landau damping, Acta Math., 207, 1, 29-201 (2011) · Zbl 1239.82017 · doi:10.1007/s11511-011-0068-9
[14] Nirenberg, L., An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differ. Geom., 6, 561-576 (1972) · Zbl 0257.35001
[15] Nishida, T., A note on a theorem of Nirenberg, J. Differ. Geom., 12, 629-633 (1977) · Zbl 0368.35007
[16] Pfaffelmoser, K., Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equations, 95, 2, 281-303 (1992) · Zbl 0810.35089 · doi:10.1016/0022-0396(92)90033-J
[17] Rendall, A., The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system, Commun. Math. Phys., 163, 89-112 (1994) · Zbl 0816.53058 · doi:10.1007/BF02101736
[18] Rein, G., Global weak solutions to the relativistic Vlasov-Maxwell system revisted, Commun. Math. Sci., 2, 2, 145-158 (2004) · Zbl 1090.35168 · doi:10.4310/CMS.2004.v2.n2.a1
[19] Rodino, L., Linear Partial Differential Operators in Gevrey Spaces (1993) · Zbl 0869.35005
[20] Reed, M.; Simon, B., Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness (1975) · Zbl 0308.47002
[21] Schlickeiser, R., Longitudinal oscillations in hot isotropic Maxwellian plasmas, Phys. Plasmas, 1, 7, 2119-2124 (1994) · doi:10.1063/1.870609
[22] Villani, C., Landau Damping
[23] Young, B., Optimal \(𝔏^β\)-control for the global Cauchy problem of the relativistic Vlasov-Poisson system, Transp. Theory Stat. Phys., 40, 331-359 (2011) · Zbl 1459.35354 · doi:10.1080/00411450.2011.651032
[24] Young, B., Existence of spherical initial data with unit mass, zero energy, and virial less than - 1/2 for the relativistic Vlasov-Poisson equation with attractive coupling, J. Math. Phys., 52, 093707 (2011) · Zbl 1272.82035 · doi:10.1063/1.3642606
[25] Young, B., On linear Landau damping for relativistic plasmas via Gevrey regularity, J. Differ. Eqns., 259, 3233-3273 (2015) · Zbl 1319.35262 · doi:10.1016/j.jde.2015.04.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.