×

On the mathematics and physics of mixed spin P-fields. (English) Zbl 1397.14071

Li, Si (ed.) et al., String-Math 2015. Proceedings of the conference, Tsinghua Sanya International Mathematics Forum in Sanya, China, December 31, 2015 – January 4, 2016. Providence, RI: American Mathematical Society (AMS); Boston, MA: International Press (ISBN 978-1-4704-2951-5/hbk; 978-1-4704-4276-7/ebook). Proceedings of Symposia in Pure Mathematics 96, 47-73 (2017).
Summary: We outline various developments of affine and general Landau-Ginzburg models in physics. We then describe the A-twisting and coupling to gravity in terms of Algebraic Geometry. We describe constructions of various path integral measures (virtual fundamental class) using the algebro-geometric technique of cosection localization, culminating in the theory of “Mixed Spin P (MSP) fields” developed by the authors.
For the entire collection see [Zbl 1381.14004].

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14J33 Mirror symmetry (algebro-geometric aspects)
14J81 Relationships between surfaces, higher-dimensional varieties, and physics

References:

[1] Abramovich, Dan; Corti, Alessio; Vistoli, Angelo, Twisted bundles and admissible covers, Comm. Algebra, 31, 8, 3547-3618 (2003) · Zbl 1077.14034 · doi:10.1081/AGB-120022434
[2] Abramovich, Dan; Fantechi, Barbara, Orbifold techniques in degeneration formulas, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16, 2, 519-579 (2016) · Zbl 1375.14182
[3] Abramovich, Dan; Graber, Tom; Vistoli, Angelo, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math., 130, 5, 1337-1398 (2008) · Zbl 1193.14070 · doi:10.1353/ajm.0.0017
[4] Abramovich, Dan; Jarvis, Tyler J., Moduli of twisted spin curves, Proc. Amer. Math. Soc., 131, 3, 685-699 (2003) · Zbl 1037.14008 · doi:10.1090/S0002-9939-02-06562-0
[5] Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 1, 45-88 (1997) · Zbl 0909.14006 · doi:10.1007/s002220050136
[6] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys., 165, 2, 311-427 (1994) · Zbl 0815.53082
[7] Candelas, Philip; de la Ossa, Xenia C.; Green, Paul S.; Parkes, Linda, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 359, 1, 21-74 (1991) · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[8] Cecotti, S., \(N=2\) Landau-Ginzburg vs.Calabi-Yau \(\sigma \)-models: nonperturbative aspects, Internat. J. Modern Phys. A, 6, 10, 1749-1813 (1991) · Zbl 0743.57022 · doi:10.1142/S0217751X91000939
[9] Chang, Huai-Liang; Kiem, Young-Hoon; Li, Jun, Torus localization and wall crossing for cosection localized virtual cycles, Adv. Math., 308, 964-986 (2017) · Zbl 1360.14127 · doi:10.1016/j.aim.2016.12.019
[10] Chang, Huai-Liang; Li, Jun, Gromov-Witten invariants of stable maps with fields, Int. Math. Res. Not. IMRN, 18, 4163-4217 (2012) · Zbl 1253.14053 · doi:10.1093/imrn/rnr186
[11] H.-L. Chang and J. Li, “A vanishing associated with irregular MSP fields,” arXiv:1708.02902. · Zbl 1467.14130
[12] Chang, Huai-Liang; Li, Jun; Li, Wei-Ping, Witten’s top Chern class via cosection localization, Invent. Math., 200, 3, 1015-1063 (2015) · Zbl 1318.14048 · doi:10.1007/s00222-014-0549-5
[13] H.-L. Chang, J. Li, W.-P. Li, and C.-C. Melissa Liu, “Mixed-Spin-P fields of Fermat quintic polynomials,” (2015) math.AG. arXiv:1505.07532
[14] H.-L. Chang, J. Li, W.-P. Li, C.-C. Melissa Liu, “An effective theory of GW and FJRW invariants of quintics Calabi-Yau manifolds,” (2016) arXiv:1603.06184.
[15] H.-L. Chang, S. Guo, and W.-P. Li, “Dual twisted FJRW invariants of quintic singularity,” in preparation.
[16] J-W. Choi and Y-H. Kiem, “Landau-Ginzburg/Calabi-Yau correspondence via quasi-maps, I,” (2011) arXiv:1103.0833.
[17] Chiodo, Alessandro, Towards an enumerative geometry of the moduli space of twisted curves and \(r\) th roots, Compos. Math., 144, 6, 1461-1496 (2008) · Zbl 1166.14018 · doi:10.1112/S0010437X08003709
[18] Chiodo, Alessandro; Ruan, Yongbin, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math., 182, 1, 117-165 (2010) · Zbl 1197.14043 · doi:10.1007/s00222-010-0260-0
[19] Ciocan-Fontanine, Ionu\c t.; Kim, Bumsig, Moduli stacks of stable toric quasimaps, Adv. Math., 225, 6, 3022-3051 (2010) · Zbl 1203.14014 · doi:10.1016/j.aim.2010.05.023
[20] Ciocan-Fontanine, Ionu\c t.; Kim, Bumsig, Wall-crossing in genus zero quasimap theory and mirror maps, Algebr. Geom., 1, 4, 400-448 (2014) · Zbl 1322.14083 · doi:10.14231/AG-2014-019
[21] Cadman, Charles, Using stacks to impose tangency conditions on curves, Amer. J. Math., 129, 2, 405-427 (2007) · Zbl 1127.14002 · doi:10.1353/ajm.2007.0007
[22] Chiodo, Alessandro, The Witten top Chern class via \(K\)-theory, J. Algebraic Geom., 15, 4, 681-707 (2006) · Zbl 1117.14008 · doi:10.1090/S1056-3911-06-00444-9
[23] Chiodo, A.; Zvonkine, D., Twisted \(r\)-spin potential and Givental’s quantization, Adv. Theor. Math. Phys., 13, 5, 1335-1369 (2009) · Zbl 1204.81099
[24] Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2), 178, 1, 1-106 (2013) · Zbl 1310.32032 · doi:10.4007/annals.2013.178.1.1
[25] Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2), 178, 1, 1-106 (2013) · Zbl 1310.32032 · doi:10.4007/annals.2013.178.1.1
[26] H. Fan, T. J. Jarvis and Y. Ruan, “A Mathematical Theory of the Gauged Linear Sigma Model,”(2015) math.AG. arXiv:1506.02109 · Zbl 1388.14041
[27] Faber, Carel; Shadrin, Sergey; Zvonkine, Dimitri, Tautological relations and the \(r\)-spin Witten conjecture, Ann. Sci. \'Ec. Norm. Sup\'er. (4), 43, 4, 621-658 (2010) · Zbl 1203.53090 · doi:10.24033/asens.2130
[28] Gathmann, Andreas, Absolute and relative Gromov-Witten invariants of very ample hypersurfaces, Duke Math. J., 115, 2, 171-203 (2002) · Zbl 1042.14032 · doi:10.1215/S0012-7094-02-11521-X
[29] Givental, Alexander B., Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices, 13, 613-663 (1996) · Zbl 0881.55006 · doi:10.1155/S1073792896000414
[30] Graber, T.; Pandharipande, R., Localization of virtual classes, Invent. Math., 135, 2, 487-518 (1999) · Zbl 0953.14035 · doi:10.1007/s002220050293
[31] Guffin, Josh; Sharpe, Eric, A-twisted Landau-Ginzburg models, J. Geom. Phys., 59, 12, 1547-1580 (2009) · Zbl 1187.81188 · doi:10.1016/j.geomphys.2009.07.014
[32] Huang, M.-x.; Klemm, A.; Quackenbush, S., Topological string theory on compact Calabi-Yau: modularity and boundary conditions. Homological mirror symmetry, Lecture Notes in Phys. 757, 45-102 (2009), Springer, Berlin · Zbl 1166.81358
[33] Huybrechts, D., Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, viii+307 pp. (2006), The Clarendon Press, Oxford University Press, Oxford · Zbl 1095.14002 · doi:10.1093/acprof:oso/9780199296866.001.0001
[34] Jarvis, Tyler J.; Kimura, Takashi, Orbifold quantum cohomology of the classifying space of a finite group. Orbifolds in mathematics and physics, Madison, WI, 2001, Contemp. Math. 310, 123-134 (2002), Amer. Math. Soc., Providence, RI · Zbl 1065.14069 · doi:10.1090/conm/310/05401
[35] Kim, Bumsig; Kresch, Andrew; Pantev, Tony, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra, 179, 1-2, 127-136 (2003) · Zbl 1078.14535 · doi:10.1016/S0022-4049(02)00293-1
[36] Katz, Sheldon; Klemm, Albrecht; Vafa, Cumrun, M-theory, topological strings and spinning black holes, Adv. Theor. Math. Phys., 3, 5, 1445-1537 (1999) · Zbl 0985.81081 · doi:10.4310/ATMP.1999.v3.n5.a6
[37] Kiem, Young-Hoon; Li, Jun, Localizing virtual cycles by cosections, J. Amer. Math. Soc., 26, 4, 1025-1050 (2013) · Zbl 1276.14083 · doi:10.1090/S0894-0347-2013-00768-7
[38] Kontsevich, Maxim, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., 147, 1, 1-23 (1992) · Zbl 0756.35081
[39] Kontsevich, Maxim, Enumeration of rational curves via torus actions. The moduli space of curves, Texel Island, 1994, Progr. Math. 129, 335-368 (1995), Birkh\`“auser Boston, Boston, MA · Zbl 0885.14028 · doi:10.1007/978-1-4612-4264-2\_12
[40] Kresch, Andrew, Cycle groups for Artin stacks, Invent. Math., 138, 3, 495-536 (1999) · Zbl 0938.14003 · doi:10.1007/s002220050351
[41] Laumon, G\'erard; Moret-Bailly, Laurent, Champs alg\'ebriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 39, xii+208 pp. (2000), Springer-Verlag, Berlin · Zbl 0945.14005
[42] Liu, Si-Qi; Ruan, Yongbin; Zhang, Youjin, BCFG Drinfeld-Sokolov hierarchies and FJRW-theory, Invent. Math., 201, 2, 711-772 (2015) · Zbl 1333.14053 · doi:10.1007/s00222-014-0559-3
[43] Li, Keke, Recursion relations in topological gravity with minimal matter, Nuclear Phys. B, 354, 2-3, 725-739 (1991) · doi:10.1016/0550-3213(91)90374-7
[44] Li, Jun; Tian, Gang, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc., 11, 1, 119-174 (1998) · Zbl 0912.14004 · doi:10.1090/S0894-0347-98-00250-1
[45] Li, Jun; Zinger, Aleksey, On the genus-one Gromov-Witten invariants of complete intersections, J. Differential Geom., 82, 3, 641-690 (2009) · Zbl 1177.53079
[46] Lian, Bong H.; Liu, Kefeng; Yau, Shing-Tung, Mirror principle. I, Asian J. Math., 1, 4, 729-763 (1997) · Zbl 0953.14026 · doi:10.4310/AJM.1997.v1.n4.a5
[47] Marian, Alina; Oprea, Dragos; Pandharipande, Rahul, The moduli space of stable quotients, Geom. Topol., 15, 3, 1651-1706 (2011) · Zbl 1256.14057 · doi:10.2140/gt.2011.15.1651
[48] Maulik, D.; Pandharipande, R., A topological view of Gromov-Witten theory, Topology, 45, 5, 887-918 (2006) · Zbl 1112.14065 · doi:10.1016/j.top.2006.06.002
[49] Mochizuki, Takuro, The virtual class of the moduli stack of stable \(r\)-spin curves, Comm. Math. Phys., 264, 1, 1-40 (2006) · Zbl 1136.14015 · doi:10.1007/s00220-006-1538-3
[50] Polishchuk, Alexander; Vaintrob, Arkady, Algebraic construction of Witten’s top Chern class. Advances in algebraic geometry motivated by physics, Lowell, MA, 2000, Contemp. Math. 276, 229-249 (2001), Amer. Math. Soc., Providence, RI · Zbl 1051.14007 · doi:10.1090/conm/276/04523
[51] D. Ross and Y. Ruan, “Wall-crossing in genus zero Landau-Ginzburg theory,” (2014) arXiv:1402.6688 · Zbl 1403.14089
[52] Ito, Kei, Topological phase of \(N=2\) superconformal field theory and topological Landau-Ginzburg field theory, Phys. Lett. B, 250, 1-2, 91-95 (1990) · doi:10.1016/0370-2693(90)91159-9
[53] Vafa, Cumrun, Topological Landau-Ginzburg models, Modern Phys. Lett. A, 6, 4, 337-346 (1991) · Zbl 1020.81886 · doi:10.1142/S0217732391000324
[54] Witten, Edward, Two-dimensional gravity and intersection theory on moduli space. Surveys in differential geometry, Cambridge, MA, 1990, 243-310 (1991), Lehigh Univ., Bethlehem, PA · Zbl 0757.53049
[55] Witten, Edward, The \(N\) matrix model and gauged WZW models, Nuclear Phys. B, 371, 1-2, 191-245 (1992) · doi:10.1016/0550-3213(92)90235-4
[56] Witten, Edward, Mirror manifolds and topological field theory. Essays on mirror manifolds, 120-158 (1992), Int. Press, Hong Kong · Zbl 0834.58013
[57] Witten, Edward, Phases of \(N=2\) theories in two dimensions, Nuclear Phys. B, 403, 1-2, 159-222 (1993) · Zbl 0910.14020 · doi:10.1016/0550-3213(93)90033-L
[58] Witten, Edward, Algebraic geometry associated with matrix models of two-dimensional gravity. Topological methods in modern mathematics, Stony Brook, NY, 1991, 235-269 (1993), Publish or Perish, Houston, TX · Zbl 0812.14017
[59] Yamaguchi, Satoshi; Yau, Shing-Tung, Topological string partition functions as polynomials, J. High Energy Phys., 7, 047, 20 pp. (2004) · doi:10.1088/1126-6708/2004/07/047
[60] Zinger, Aleksey, Standard versus reduced genus-one Gromov-Witten invariants, Geom. Topol., 12, 2, 1203-1241 (2008) · Zbl 1167.14009 · doi:10.2140/gt.2008.12.1203
[61] Zinger, Aleksey, The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces, J. Amer. Math. Soc., 22, 3, 691-737 (2009) · Zbl 1206.14081 · doi:10.1090/S0894-0347-08-00625-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.