×

Wall-crossing in genus zero Landau-Ginzburg theory. (English) Zbl 1403.14089

For a quasi-homogeneous polynomial \(W\) with weights \((w_1, \ldots , w_N)\) and degree \(d\) (satisfying certain conditions), let \(X_W\) be the hypersurface in the weighted projective space \(\mathbb{P}(w_1, \ldots , w_N)\) defined by the vanishing of \(W\). Then, the Landau-Ginzburg/Calabi-Yau (LG/CY) correspondence asserts the equivalence of two cohomological field theories (CohFTs): the Fan-Jarvis-Ruan-Witten (FJRW) theory of \(W\), and the Gromov-Witten (GW) theory of \(X_W\). The FJRW theory of \(W\) is defined via intersection numbers of the moduli spaces \(\mathcal{R}^d_{\vec k}, \epsilon \vec{l}\), parametrising \(\vec{l}\)-twisted \(d\)-spin structures on \((d,\epsilon)\)-stable curves. These intersection numbers are defined by integrating \(\psi\)-classes over the Witten class of \(\mathcal{R}^d_{\vec k}\).
It is expected that the LG/CY correspondence could be proved using the theory of gauged linear sigma model (GLSM) of Witten (for a mathematically rigorous definition of the GLSM see [H. Fan et al., Geom. Topol. 22, No. 1, 235–303 (2018; Zbl 1388.14041)]. In the case of hypersurfaces, the GLSM is a one-dimensional family of CohFTs parametrised by the rational numbers different from zero. The CohFTs lying over \(\mathbb{Q}_{>0}\) (the so-called geometric phase) are related to certain versions of quasi-maps, while those over \(\mathbb{Q}_{<0}\) (the Landau-Ginzburg phase) correspond to the FJRW theory of \(W\).
The main results of the the paper under review concerns the CohFTs lying over \(\mathbb{Q}_{<0}\). For a Fermat polynomial \(W\), the authors define the genus zero descendant potential \(\mathcal{F}^\epsilon_W\), for any \(\epsilon \in \mathbb{Q}_{>0}\) (the authors normilize the GLSMs in such a way to work with positive \(\epsilon\)). This is a generating function for the intersection numbers of the moduli spaces \(\mathcal{R}^d_{\vec k}\) above. For \(\epsilon >1\) (denoted \(\epsilon = \infty\)) one recovers the narrow FJRW descendant potential \(\mathcal{F}^\infty\). Following Givental, the authors define a certain infinite-dimensional vector space \(\mathcal{H}\), and the graph of the differential of \(\mathcal{F}^\infty\) is the formal germ of a Lagrangian cone \(\mathcal{L} \subset \mathcal{H}\), whose geometry reflects the properties of \(\mathcal{F}^\infty\). The derivatives of \(\mathcal{F}^\epsilon_W\) with respect to \(t\) yields the so-called large \(\mathcal{J}^\epsilon (t,u,-z)\)-functions. The main theorem of the paper (Theorem 1.11) says that, for any \(\epsilon >0\), \(\mathcal{J}^\epsilon (t,u,-z)\) is an \(\mathcal{H} (u)\)-valued point of \(\mathcal{L}\). This means that \(\mathcal{J}^\epsilon (t,u,-z)\) is a formal series of a certain form.
In Section 3 the authors derive several important consequences of the previous main theorem. The first one is a formula that relates \(\mathcal{J}^{\epsilon_1}\) with \(\mathcal{J}^{\epsilon_2}\), for different \(\epsilon_1, \epsilon_2 >0\). Furthermore, for \(\epsilon \to 0\) they obtain a new geometric interpretation of the LG mirror theorem.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14J33 Mirror symmetry (algebro-geometric aspects)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

Citations:

Zbl 1388.14041

References:

[1] P. Acosta, Asymptotic expansion and the LG/(Fano, general type) correspondence, preprint (2014), .; Acosta, P., Asymptotic expansion and the LG/(Fano, general type) correspondence (2014)
[2] H.-L. Chang and J. Li, Gromov-Witten invariants of stable maps with fields, Int. Math. Res. Not. IMRN 2012 (2012), no. 18, 4163-4217.; Chang, H.-L.; Li, J., Gromov-Witten invariants of stable maps with fields, Int. Math. Res. Not. IMRN, 2012, 18, 4163-4217 (2012) · Zbl 1253.14053
[3] H.-L. Chang, J. Li and W.-P. Li, Witten’s top Chern class via cosection localization, preprint (2013), . <pub-id pub-id-type=”ThomsonISI“>http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000354707300006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3; Chang, H.-L.; Li, J.; Li, W.-P., Witten’s top Chern class via cosection localization (2013) · Zbl 1318.14048
[4] A. Chiodo, The Witten top Chern class via K-theory, J. Algebraic Geom. 15 (2006), no. 4, 681-707.; Chiodo, A., The Witten top Chern class via K-theory, J. Algebraic Geom., 15, 4, 681-707 (2006) · Zbl 1117.14008
[5] A. Chiodo, H. Iritani and Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014), 127-216.; Chiodo, A.; Iritani, H.; Ruan, Y., Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci., 119, 127-216 (2014) · Zbl 1298.14042
[6] A. Chiodo and Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), no. 1, 117-165.; Chiodo, A.; Ruan, Y., Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math., 182, 1, 117-165 (2010) · Zbl 1197.14043
[7] I. Ciocan-Fontanine and B. Kim, Higher genus quasimap wall-crossing for semi-positive targets, preprint (2013), .; Ciocan-Fontanine, I.; Kim, B., Higher genus quasimap wall-crossing for semi-positive targets (2013) · Zbl 1408.14041
[8] I. Ciocan-Fontanine and B. Kim, Big I-functions, preprint (2014), .; Ciocan-Fontanine, I.; Kim, B., Big I-functions (2014) · Zbl 1369.14018
[9] I. Ciocan-Fontanine and B. Kim, Wall-crossing in genus zero quasimap theory and mirror maps, Algebr. Geom. 1 (2014), no. 4, 400-448.; Ciocan-Fontanine, I.; Kim, B., Wall-crossing in genus zero quasimap theory and mirror maps, Algebr. Geom., 1, 4, 400-448 (2014) · Zbl 1322.14083
[10] I. Ciocan-Fontanine, B. Kim and D. Maulik, Stable quasimaps to GIT quotients, J. Geom. Phys. 75 (2014), 17-47.; Ciocan-Fontanine, I.; Kim, B.; Maulik, D., Stable quasimaps to GIT quotients, J. Geom. Phys., 75, 17-47 (2014) · Zbl 1282.14022
[11] T. Coates, A. Corti, H. Iritani and H.-H. Tseng, Some applications of the mirror theorem for toric stacks, preprint (2014), .; Coates, T.; Corti, A.; Iritani, H.; Tseng, H.-H., Some applications of the mirror theorem for toric stacks (2014) · Zbl 1476.14098
[12] Y. Cooper and A. Zinger, Mirror symmetry for stable quotients invariants, Michigan Math. J. 63 (2014), no. 3, 571-621.; Cooper, Y.; Zinger, A., Mirror symmetry for stable quotients invariants, Michigan Math. J., 63, 3, 571-621 (2014) · Zbl 1418.14010
[13] H. Fan, T. Jarvis and Y. Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2) 178 (2013), no. 1, 1-106.; Fan, H.; Jarvis, T.; Ruan, Y., The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2), 178, 1, 1-106 (2013) · Zbl 1310.32032
[14] H. Fan, T. Jarvis and Y. Ruan, A mathematical theory of the gauged linear sigma model, preprint.; Fan, H.; Jarvis, T.; Ruan, Y., A mathematical theory of the gauged linear sigma model · Zbl 1388.14041
[15] A. Givental, Equivariant Gromov-Witten invariants, Int. Math. Res. Not. IMRN 1996 (1996), no. 13, 613-663.; Givental, A., Equivariant Gromov-Witten invariants, Int. Math. Res. Not. IMRN, 1996, 13, 613-663 (1996) · Zbl 0881.55006
[16] A. Givental, Symplectic geometry of Frobenius structures, Frobenius manifolds, Aspects Math. E36, Friedr. Vieweg, Wiesbaden (2004), 91-112.; Givental, A., Symplectic geometry of Frobenius structures, Frobenius manifolds, 91-112 (2004) · Zbl 1075.53091
[17] B. Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003), no. 2, 316-352.; Hassett, B., Moduli spaces of weighted pointed stable curves, Adv. Math., 173, 2, 316-352 (2003) · Zbl 1072.14014
[18] B. Lian, K. Liu and S.-T. Yau, Mirror principle. I, Asian J. Math. 1 (1997), no. 4, 729-763.; Lian, B.; Liu, K.; Yau, S.-T., Mirror principle. I, Asian J. Math., 1, 4, 729-763 (1997) · Zbl 0953.14026
[19] A. Polishchuk and A. Vaintrob, Algebraic construction of Witten’s top Chern class, Advances in algebraic geometry motivated by physics (Lowell 2000), Contemp. Math. 276, American Mathematical Society, Providence (2001), 229-249.; Polishchuk, A.; Vaintrob, A., Algebraic construction of Witten’s top Chern class, Advances in algebraic geometry motivated by physics (Lowell 2000), 229-249 (2001) · Zbl 1051.14007
[20] E. Witten, Phases of \(N=2\) theories in two dimensions, Mirror symmetry II, AMS/IP Stud. Adv. Math. 1, American Mathematical Society, Providence (1997), 143-211.; Witten, E., Phases of \(N=2\) theories in two dimensions, Mirror symmetry II, 143-211 (1997) · Zbl 0910.14019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.