×

Riemannian metrics on Lie groupoids. (English) Zbl 1385.53076

The authors introduce a notion of Riemannian metric for Lie groupoids which is compatible with the groupoid multiplication. It is shown that such a metric can be attached to Lie groups, étale groupoids, transitive groupoids, locally trivial Lie group bundles, as well as Hausdorff proper Lie groupoids. The main result of the paper is that the exponential map associated with this metric can be used to prove the linearization theorem for Riemannian groupoids as such. Corollaries of this result are Ehresmann’s theorem for submersions, the Reeb stability theorem for foliations, the Bochner linearisation theorem as well as the Tube theorem for proper Lie group actions. The authors also announce forthcoming work of theirs, where this notion of Riemannian metric gives rise to a metric on smooth stacks.

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids

References:

[1] C. Abad and M. Crainic, Representations up to homotopy and Bott’s spectral sequence for Lie groupoids, Adv. Math. 248 (2013), 416-452.; Abad, C.; Crainic, M., Representations up to homotopy and Bott’s spectral sequence for Lie groupoids, Adv. Math., 248, 416-452 (2013) · Zbl 1284.55018
[2] H. Bursztyn and A. Cabrera, Multiplicative forms at the infinitesimal level, Math. Ann. 353 (2012), 663-705.; Bursztyn, H.; Cabrera, A., Multiplicative forms at the infinitesimal level, Math. Ann., 353, 663-705 (2012) · Zbl 1247.58014
[3] M. Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. 78 (2003), 681-721.; Crainic, M., Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv., 78, 681-721 (2003) · Zbl 1041.58007
[4] M. Crainic and R. L. Fernandes, Lectures on integrability of Lie brackets, Geom. Topol. Monogr. 17 (2011), 1-107.; Crainic, M.; Fernandes, R. L., Lectures on integrability of Lie brackets, Geom. Topol. Monogr., 17, 1-107 (2011) · Zbl 1227.22005
[5] M. Crainic and I. Moerdijk, Foliation groupoids and their cyclic homology, Adv. in Math. 157 (2001), 177-197.; Crainic, M.; Moerdijk, I., Foliation groupoids and their cyclic homology, Adv. in Math., 157, 177-197 (2001) · Zbl 0989.22010
[6] M. Crainic and I. Struchiner, On the linearization theorem for proper Lie groupoids, Ann. Scient. Éc. Norm. Sup. (4) 46 (2013), 723-746.; Crainic, M.; Struchiner, I., On the linearization theorem for proper Lie groupoids, Ann. Scient. Éc. Norm. Sup. (4), 46, 723-746 (2013) · Zbl 1286.53080
[7] M. del Hoyo, Lie groupoids and their orbispaces, Portugal. Math. 70 (2013), 161-209.; del Hoyo, M., Lie groupoids and their orbispaces, Portugal. Math., 70, 161-209 (2013) · Zbl 1277.22005
[8] M. del Hoyo and R. L. Fernandes, A stacky version of Ehresmann’s theorem, in preparation.; del Hoyo, M.; Fernandes, R. L., A stacky version of Ehresmann’s theorem · Zbl 1422.22006
[9] M. del Hoyo and R. L. Fernandes, Simplicial metrics on Lie groupoids, in preparation.; del Hoyo, M.; Fernandes, R. L., Simplicial metrics on Lie groupoids · Zbl 1385.53076
[10] J. Duistermaat and J. Kolk, Lie groups, Universitext, Springer, Berlin 2000.; Duistermaat, J.; Kolk, J., Lie groups (2000) · Zbl 0955.22001
[11] E. Gallego, L. Gualandri, G. Hector and A. Reventos, Groupoïdes Riemanniens, Publ. Mat. 33 (1989), no. 3, 417-422.; Gallego, E.; Gualandri, L.; Hector, G.; Reventos, A., Groupoïdes Riemanniens, Publ. Mat., 33, 3, 417-422 (1989) · Zbl 0704.53024
[12] D. Glickenstein, Riemannian groupoids and solitons for three-dimensional homogeneous Ricci and cross-curvature flows, Int. Math. Res. Notices (2008), Article ID rnn034.; Glickenstein, D., Riemannian groupoids and solitons for three-dimensional homogeneous Ricci and cross-curvature flows, Int. Math. Res. Notices (2008) · Zbl 1154.53042
[13] R. Hepworth, Morse inequalities for orbifold cohomology, Algebr. Geom. Topol. 9 (2009), 1105-1175.; Hepworth, R., Morse inequalities for orbifold cohomology, Algebr. Geom. Topol., 9, 1105-1175 (2009) · Zbl 1175.55004
[14] J. Lee, Riemannian manifolds: An introduction to curvature, Grad. Texts in Math. 176, Springer, Berlin 1997.; Lee, J., Riemannian manifolds: An introduction to curvature (1997) · Zbl 0905.53001
[15] I. Moerdijk and J. Mrcun, Introduction to foliations and Lie groupoids, Cambridge Stud. Adv. Math. 91, Cambridge University Press, Cambridge 2003.; Moerdijk, I.; Mrcun, J., Introduction to foliations and Lie groupoids (2003) · Zbl 1029.58012
[16] M. Pflaum, H. Posthuma and X. Tang, Geometry of orbit spaces of proper Lie groupoids, J. reine angew. Math. 694 (2014), 49-84.; Pflaum, M.; Posthuma, H.; Tang, X., Geometry of orbit spaces of proper Lie groupoids, J. reine angew. Math., 694, 49-84 (2014) · Zbl 1297.53022
[17] R. Sharpe, Differential geometry. Cartan’s generalization of Klein’s Erlangen program, Grad. Texts in Math. 166, Springer, New York 1997.; Sharpe, R., Differential geometry. Cartan’s generalization of Klein’s Erlangen program (1997) · Zbl 0876.53001
[18] J. L. Tu, La conjecture de Novikov pour les feuilletages hyperboliques, K-Theory 16 (1999), no. 2, 129-184.; Tu, J. L., La conjecture de Novikov pour les feuilletages hyperboliques, K-Theory, 16, 2, 129-184 (1999) · Zbl 0932.19005
[19] A. Weinstein, Linearization problems for Lie algebroids and Lie groupoids, Lett. Math. Phys. 52 (2000), 93-102.; Weinstein, A., Linearization problems for Lie algebroids and Lie groupoids, Lett. Math. Phys., 52, 93-102 (2000) · Zbl 0961.22004
[20] A. Weinstein, Linearization of regular proper groupoids, J. Inst. Math. Jussieu 1 (2002), 493-511.; Weinstein, A., Linearization of regular proper groupoids, J. Inst. Math. Jussieu, 1, 493-511 (2002) · Zbl 1043.58009
[21] N. T. Zung, Proper groupoids and momentum maps: Linearization, affinity and convexity, Ann. Scient. Éc. Norm. Sup. (4) 39 (2006), 841-869.; Zung, N. T., Proper groupoids and momentum maps: Linearization, affinity and convexity, Ann. Scient. Éc. Norm. Sup. (4), 39, 841-869 (2006) · Zbl 1163.22001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.