×

Weighted sets of probabilities and minimax weighted expected regret: a new approach for representing uncertainty and making decisions. (English) Zbl 1378.91064

Summary: We consider a setting where a decision maker’s uncertainty is represented by a set of probability measures, rather than a single measure. Measure-by-measure updating of such a set of measures upon acquiring new information is well known to suffer from problems. To deal with these problems, we propose using weighted sets of probabilities: a representation where each measure is associated with a weight, which denotes its significance. We describe a natural approach to updating in such a situation and a natural approach to determining the weights. We then show how this representation can be used in decision making, by modifying a standard approach to decision making – minimizing expected regret – to obtain minimax weighted expected regret (MWER). We provide an axiomatization that characterizes preferences induced by MWER both in the static and dynamic case.

MSC:

91B06 Decision theory

References:

[1] Abdellaoui, M., Baillon, A., Placido, L., & Wakker, P. P. (2011). The rich domain of uncertainty: Source functions and their experimental implementation. American Economic Review, 101(2), 695-723. · doi:10.1257/aer.101.2.695
[2] Anscombe, F., & Aumann, R. (1963). A definition of subjective probability. Annals of Mathematical Statistics, 34, 199-205. · Zbl 0114.07204 · doi:10.1214/aoms/1177704255
[3] Bleichrodt, H. (2009). Reference-dependent expected utility with incomplete preferences. Journal of Mathematical Psychology, 53(4), 287-293. · Zbl 1187.91037 · doi:10.1016/j.jmp.2009.04.010
[4] Chateauneuf, A., & Faro, J. (2009). Ambiguity through confidence functions. Journal of Mathematical Economics, 45, 535-558. · Zbl 1195.91040 · doi:10.1016/j.jmateco.2009.05.001
[5] Chew, S. H. (1983). A generalization of the quasilinear mean with applications to the measurement of income inequality and decision theory resolving the allais paradox. Econometrica, 51(4), 1065-1092. · Zbl 0517.90009 · doi:10.2307/1912052
[6] de Cooman, G. (2005). A behavioral model for vague probability assessments. Fuzzy Sets and Systems, 154(3), 305-358. · Zbl 1123.62006 · doi:10.1016/j.fss.2005.01.005
[7] Epstein, L. G., & Le Breton, M. (1993). Dynamically consistent beliefs must be Bayesian. Journal of Economic Theory, 61(1), 1-22. · Zbl 0787.90002 · doi:10.1006/jeth.1993.1056
[8] Epstein, L. G., & Schneider, M. (2007). Learning under ambiguity. Review of Economic Studies, 74(4), 1275-1303. · Zbl 1206.91020 · doi:10.1111/j.1467-937X.2007.00464.x
[9] Ghirardato, P. (2002). Revisiting savage in a conditional world. Economic Theory, 20(1), 83-92. · Zbl 1030.91017 · doi:10.1007/s001990100188
[10] Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with a non-unique prior. Journal of Mathematical Economics, 18, 141-153. · Zbl 0675.90012 · doi:10.1016/0304-4068(89)90018-9
[11] Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of Mathematical Economics, 18(2), 141-153. · Zbl 0675.90012 · doi:10.1016/0304-4068(89)90018-9
[12] Hayashi, T. (2008). Regret aversion and opportunity dependence. Journal of Economic Theory, 139(1), 242-268. · Zbl 1134.91013 · doi:10.1016/j.jet.2007.07.001
[13] Jaffray, J.-Y. (1992). Bayesian updating and belief functions. Systems, Man and Cybernetics, IEEE Transactions on, 22(5), 1144-1152. · Zbl 0769.62001 · doi:10.1109/21.179852
[14] Jaffray, J.-Y. (1994). Dynamic decision making with belief functions. In R. R. Yager, J. Kacprczyk, & M. Fedrizzi (Eds.), Advances in the Dempster-Shafer theory of evidence (pp. 331-352). New York: Wiley. · Zbl 0769.62001
[15] Klibanoff, P., Marinacci, M., & Mukerji, S. (2005). A smooth model of decision making under ambiguity. Econometrica, 73(6), 1849-1892. · Zbl 1151.91372 · doi:10.1111/j.1468-0262.2005.00640.x
[16] Kreps, D. M. (1988). Notes on the theory of choice. Boulder, CO: Westview Press.
[17] Loomes, G., & Sugden, R. (1982). Regret theory: An alternative theory of rational choice under uncertainty. Economic Journal, 92(368), 805-824. · doi:10.2307/2232669
[18] Maccheroni, F., Marinacci, M., & Rustichini, A. (2006). Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica, 74(6), 1447-1498. · Zbl 1187.91066 · doi:10.1111/j.1468-0262.2006.00716.x
[19] Moral, S. (1992). Calculating uncertainty intervals from conditional convex sets of probabilities. (pp. 199-206). · Zbl 1187.91037
[20] Niehans, J. (1948). Zur preisbildung bei ungewissen erwartungen. Schweizerische Zeitschrift für Volkswirtschaft und Statistik, 84(5), 433-456.
[21] Pires, C. P. (2002). A rule for updating ambiguous beliefs. Theory and Decision, 53(2), 137-152. · Zbl 1048.91038 · doi:10.1023/A:1021255808323
[22] Rockafellar, R. T. (1970). Convex analysis. Princeton, NJ: Princeton University Press. · Zbl 0193.18401 · doi:10.1515/9781400873173
[23] Sarver, T. (2008). Anticipating regret: Why fewer options may be better. Econometrica, 76(2), 263-305. · Zbl 1133.91347 · doi:10.1111/j.1468-0262.2008.00834.x
[24] Savage, L. (1951). The theory of statistical decision. Journal of the American Statistical Association, 46, 55-67. · Zbl 0042.14302 · doi:10.1080/01621459.1951.10500768
[25] Savage, L. (1954). The foundations of statistics. New York: Wiley. · Zbl 0055.12604
[26] Siniscalchi, M. (2011). Dynamic choice under ambiguity. Theoretical Economics, 6(3), 379-421. · Zbl 1279.91056 · doi:10.3982/TE571
[27] Stoye, J. (2011). Axioms for minimax regret choice correspondences. Journal of Economic Theory, 146(6), 2226-2251. · Zbl 1229.91107
[28] Stoye, J. (2011). Statistical decisions under ambiguity. Theory and Decision, 70(2), 129-148. · Zbl 1274.62074
[29] Stoye, J. (2013). Choice theory when agents can randomize. Unpublished manuscript. · Zbl 1310.91056
[30] Walley, P. (1997). Statistical inferences based on a second-order possibility distribution. International Journal of General Systems, 26(4), 337-383. · Zbl 0905.62026 · doi:10.1080/03081079708945189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.