×

Inverse magnetic catalysis in the soft-wall model of AdS/QCD. (English) Zbl 1377.81235

Summary: Magnetic effects on chiral phase transition have been investigated in a modified soft-wall AdS/QCD model, in which the dilaton field is taken to be negative at the ultraviolet region and positive at the infrared region as in [K. Chelabi et al., “Realization of chiral symmetry breaking and restoration in holographic QCD,”, Phys. Rev. D 93, 101901 (2016; doi:10.1103/PhysRevD.93.101901) and K. Chelabi et al., “Chiral phase transition in the soft-wall model of AdS/QCD”, J. High Energy Phys. 2016, 04, Paper No. 036, 30 p., (2016; doi:10.1007/JHEP04(2016)036). The magnetic field is introduced into the background geometry by solving the Einstein-Maxwell system. After embedding the magnetized background geometry into the modified soft-wall model, the magnetic field dependent behavior of chiral condensate is worked out numerically. It is found that, in the chiral limit, the chiral phase transition remains as a second order at finite magnetic field \(B\), while the symmetry restoration temperature and chiral condensate decrease with the increasing of magnetic field in small \(B\) region. When including finite quark mass effect, the phase transition turns to be a crossover one, and the transition temperature still decreases with increasing magnetic field \(B\) when \(B\) is not very large. In this sense, inverse magnetic catalysis effect is observed in this modified soft-wall AdS/QCD model.

MSC:

81V05 Strong interaction, including quantum chromodynamics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] T. Vachaspati, Magnetic fields from cosmological phase transitions, Phys. Lett.B 265 (1991) 258 [INSPIRE]. · doi:10.1016/0370-2693(91)90051-Q
[2] K. Enqvist and P. Olesen, On primordial magnetic fields of electroweak origin, Phys. Lett.B 319 (1993) 178 [hep-ph/9308270] [INSPIRE].
[3] V. Skokov, A. Yu. Illarionov and V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod. Phys.A 24 (2009) 5925 [arXiv:0907.1396] [INSPIRE]. · doi:10.1142/S0217751X09047570
[4] V. Voronyuk, V.D. Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski and S.A. Voloshin, (Electro-)magnetic field evolution in relativistic heavy-ion collisions, Phys. Rev.C 83 (2011) 054911 [arXiv:1103.4239] [INSPIRE].
[5] A. Bzdak and V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions, Phys. Lett.B 710 (2012) 171 [arXiv:1111.1949] [INSPIRE]. · doi:10.1016/j.physletb.2012.02.065
[6] W.-T. Deng and X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions, Phys. Rev.C 85 (2012) 044907 [arXiv:1201.5108] [INSPIRE].
[7] S.P. Klevansky and R.H. Lemmer, Chiral symmetry restoration in the Nambu-Jona-Lasinio model with a constant electromagnetic field, Phys. Rev.D 39 (1989) 3478 [INSPIRE].
[8] K.G. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field, Theor. Math. Phys.89 (1992) 1161 [Teor. Mat. Fiz.89 (1991) 211] [INSPIRE]. · Zbl 1388.83292
[9] V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field, Nucl. Phys.B 462 (1996) 249 [hep-ph/9509320] [INSPIRE]. · Zbl 1388.83159
[10] I.A. Shovkovy, Magnetic catalysis: a review, Lect. Notes Phys.871 (2013) 13 [arXiv:1207.5081] [INSPIRE]. · doi:10.1007/978-3-642-37305-3_2
[11] I.A. Shushpanov and A.V. Smilga, Quark condensate in a magnetic field, Phys. Lett.B 402 (1997) 351 [hep-ph/9703201] [INSPIRE]. · Zbl 1398.83094
[12] N.O. Agasian and I.A. Shushpanov, The quark and gluon condensates and low-energy QCD theorems in a magnetic field, Phys. Lett.B 472 (2000) 143 [hep-ph/9911254] [INSPIRE].
[13] J. Alexandre, K. Farakos and G. Koutsoumbas, Magnetic catalysis in QED3at finite temperature: beyond the constant mass approximation, Phys. Rev.D 63 (2001) 065015 [hep-th/0010211] [INSPIRE].
[14] N.O. Agasian, Chiral thermodynamics in a magnetic field, Phys. Atom. Nucl.64 (2001) 554 [Yad. Fiz.64 (2001) 608] [hep-ph/0112341] [INSPIRE]. · Zbl 0972.81670
[15] T.D. Cohen, D.A. McGady and E.S. Werbos, The chiral condensate in a constant electromagnetic field, Phys. Rev.C 76 (2007) 055201 [arXiv:0706.3208] [INSPIRE].
[16] R. Gatto and M. Ruggieri, Dressed Polyakov loop and phase diagram of hot quark matter under magnetic field, Phys. Rev.D 82 (2010) 054027 [arXiv:1007.0790] [INSPIRE].
[17] R. Gatto and M. Ruggieri, Deconfinement and chiral symmetry restoration in a strong magnetic background, Phys. Rev.D 83 (2011) 034016 [arXiv:1012.1291] [INSPIRE].
[18] A.J. Mizher, M.N. Chernodub and E.S. Fraga, Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions, Phys. Rev.D 82 (2010) 105016 [arXiv:1004.2712] [INSPIRE].
[19] K. Kashiwa, Entanglement between chiral and deconfinement transitions under strong uniform magnetic background field, Phys. Rev.D 83 (2011) 117901 [arXiv:1104.5167] [INSPIRE].
[20] S.S. Avancini, D.P. Menezes, M.B. Pinto and C. Providencia, The QCD critical end point under strong magnetic fields, Phys. Rev.D 85 (2012) 091901 [arXiv:1202.5641] [INSPIRE].
[21] J.O. Andersen, Thermal pions in a magnetic background, Phys. Rev.D 86 (2012) 025020 [arXiv:1202.2051] [INSPIRE].
[22] D.D. Scherer and H. Gies, Renormalization group study of magnetic catalysis in the 3d Gross-Neveu model, Phys. Rev.B 85 (2012) 195417 [arXiv:1201.3746] [INSPIRE]. · doi:10.1103/PhysRevB.85.195417
[23] P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Numerical study of chiral symmetry breaking in non-Abelian gauge theory with background magnetic field, Phys. Lett.B 682 (2010) 484 [arXiv:0812.1740] [INSPIRE]. · Zbl 1203.81170 · doi:10.1016/j.physletb.2009.11.017
[24] V.V. Braguta, P.V. Buividovich, T. Kalaydzhyan, S.V. Kuznetsov and M.I. Polikarpov, The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory, Phys. Atom. Nucl.75 (2012) 488 [arXiv:1011.3795] [INSPIRE]. · doi:10.1134/S1063778812030052
[25] M. D’Elia, S. Mukherjee and F. Sanfilippo, QCD phase transition in a strong magnetic background, Phys. Rev.D 82 (2010) 051501 [arXiv:1005.5365] [INSPIRE].
[26] M. D’Elia and F. Negro, Chiral properties of strong interactions in a magnetic background, Phys. Rev.D 83 (2011) 114028 [arXiv:1103.2080] [INSPIRE].
[27] E.M. Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B. Petersson and A. Schreiber, Two-color QCD with staggered fermions at finite temperature under the influence of a magnetic field, Phys. Rev.D 85 (2012) 114504 [arXiv:1203.3360] [INSPIRE].
[28] G.S. Bali et al., The QCD phase diagram for external magnetic fields, JHEP02 (2012) 044 [arXiv:1111.4956] [INSPIRE]. · Zbl 1309.81258 · doi:10.1007/JHEP02(2012)044
[29] G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz and A. Schafer, QCD quark condensate in external magnetic fields, Phys. Rev.D 86 (2012) 071502 [arXiv:1206.4205] [INSPIRE]. · Zbl 1309.81258
[30] V.G. Bornyakov, P.V. Buividovich, N. Cundy, O.A. Kochetkov and A. Schäfer, Deconfinement transition in two-flavor lattice QCD with dynamical overlap fermions in an external magnetic field, Phys. Rev.D 90 (2014) 034501 [arXiv:1312.5628] [INSPIRE].
[31] K. Fukushima and Y. Hidaka, Magnetic catalysis versus magnetic inhibition, Phys. Rev. Lett.110 (2013) 031601 [arXiv:1209.1319] [INSPIRE]. · doi:10.1103/PhysRevLett.110.031601
[32] T. Kojo and N. Su, The quark mass gap in a magnetic field, Phys. Lett.B 720 (2013) 192 [arXiv:1211.7318] [INSPIRE]. · Zbl 1372.81150 · doi:10.1016/j.physletb.2013.02.024
[33] F. Bruckmann, G. Endrodi and T.G. Kovacs, Inverse magnetic catalysis and the Polyakov loop, JHEP04 (2013) 112 [arXiv:1303.3972] [INSPIRE]. · doi:10.1007/JHEP04(2013)112
[34] J. Chao, P. Chu and M. Huang, Inverse magnetic catalysis induced by sphalerons, Phys. Rev.D 88 (2013) 054009 [arXiv:1305.1100] [INSPIRE].
[35] E.S. Fraga, B.W. Mintz and J. Schaffner-Bielich, A search for inverse magnetic catalysis in thermal quark-meson models, Phys. Lett.B 731 (2014) 154 [arXiv:1311.3964] [INSPIRE]. · doi:10.1016/j.physletb.2014.02.028
[36] M. Ferreira, P. Costa, O. Lourenço, T. Frederico and C. Providência, Inverse magnetic catalysis in the (2 + 1)-flavor Nambu-Jona-Lasinio and Polyakov-Nambu-Jona-Lasinio models, Phys. Rev.D 89 (2014) 116011 [arXiv:1404.5577] [INSPIRE].
[37] R.L.S. Farias, K.P. Gomes, G.I. Krein and M.B. Pinto, Importance of asymptotic freedom for the pseudocritical temperature in magnetized quark matter, Phys. Rev.C 90 (2014) 025203 [arXiv:1404.3931] [INSPIRE].
[38] L. Yu, H. Liu and M. Huang, Spontaneous generation of local CP-violation and inverse magnetic catalysis, Phys. Rev.D 90 (2014) 074009 [arXiv:1404.6969] [INSPIRE].
[39] J.O. Andersen, W.R. Naylor and A. Tranberg, Inverse magnetic catalysis and regularization in the quark-meson model, JHEP02 (2015) 042 [arXiv:1410.5247] [INSPIRE]. · doi:10.1007/JHEP02(2015)042
[40] E.J. Ferrer, V. de la Incera and X.J. Wen, Quark antiscreening at strong magnetic field and inverse magnetic catalysis, Phys. Rev.D 91 (2015) 054006 [arXiv:1407.3503] [INSPIRE].
[41] B. Feng, D.-F. Hou and H.-C. Ren, Magnetic and inverse magnetic catalysis in the Bose-Einstein condensation of neutral bound pairs, Phys. Rev.D 92 (2015) 065011 [arXiv:1412.1647] [INSPIRE].
[42] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[43] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[44] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[45] S.-W. Li and T. Jia, Dynamically flavored description of holographic QCD in the presence of a magnetic field, arXiv:1604.07197 [INSPIRE].
[46] K.A. Mamo, Inverse magnetic catalysis in holographic models of QCD, JHEP05 (2015) 121 [arXiv:1501.03262] [INSPIRE]. · Zbl 1388.83300 · doi:10.1007/JHEP05(2015)121
[47] N. Evans, C. Miller and M. Scott, Inverse magnetic catalysis in bottom-up holographic QCD, Phys. Rev.D 94 (2016) 074034 [arXiv:1604.06307] [INSPIRE].
[48] D. Dudal, D.R. Granado and T.G. Mertens, No inverse magnetic catalysis in the QCD hard and soft wall models, Phys. Rev.D 93 (2016) 125004 [arXiv:1511.04042] [INSPIRE].
[49] A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev.D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].
[50] T. Gherghetta, J.I. Kapusta and T.M. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model, Phys. Rev.D 79 (2009) 076003 [arXiv:0902.1998] [INSPIRE].
[51] T.M. Kelley, S.P. Bartz and J.I. Kapusta, Pseudoscalar mass spectrum in a soft-wall model of AdS/QCD, Phys. Rev.D 83 (2011) 016002 [arXiv:1009.3009] [INSPIRE].
[52] Y.-Q. Sui, Y.-L. Wu, Z.-F. Xie and Y.-B. Yang, Prediction for the mass spectra of resonance mesons in the soft-wall AdS/QCD with a modified 5D metric, Phys. Rev.D 81 (2010) 014024 [arXiv:0909.3887] [INSPIRE].
[53] Y.-Q. Sui, Y.-L. Wu and Y.-B. Yang, Predictive AdS/QCD model for mass spectra of mesons with three flavors, Phys. Rev.D 83 (2011) 065030 [arXiv:1012.3518] [INSPIRE].
[54] Z. Fang, D. Li and Y.-L. Wu, IR-improved soft-wall AdS/QCD model for baryons, Phys. Lett.B 754 (2016) 343 [arXiv:1602.00379] [INSPIRE]. · Zbl 1366.81277 · doi:10.1016/j.physletb.2016.01.045
[55] D. Li, M. Huang and Q.-S. Yan, A dynamical soft-wall holographic QCD model for chiral symmetry breaking and linear confinement, Eur. Phys. J.C 73 (2013) 2615 [arXiv:1206.2824] [INSPIRE]. · doi:10.1140/epjc/s10052-013-2615-3
[56] D. Li and M. Huang, Dynamical holographic QCD model for glueball and light meson spectra, JHEP11 (2013) 088 [arXiv:1303.6929] [INSPIRE]. · doi:10.1007/JHEP11(2013)088
[57] P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri, Light scalar mesons in the soft-wall model of AdS/QCD, Phys. Rev.D 78 (2008) 055009 [arXiv:0807.1054] [INSPIRE].
[58] S. He, S.-Y. Wu, Y. Yang and P.-H. Yuan, Phase structure in a dynamical soft-wall holographic QCD model, JHEP04 (2013) 093 [arXiv:1301.0385] [INSPIRE]. · doi:10.1007/JHEP04(2013)093
[59] Y. Chen and M. Huang, Two-gluon and trigluon glueballs from dynamical holography QCD, Chin. Phys.C 40 (2016) 123101 [arXiv:1511.07018] [INSPIRE]. · doi:10.1088/1674-1137/40/12/123101
[60] E. Folco Capossoli and H. Boschi-Filho, Odd spin glueball masses and the odderon Regge trajectories from the holographic hardwall model, Phys. Rev.D 88 (2013) 026010 [arXiv:1301.4457] [INSPIRE].
[61] E. Folco Capossoli and H. Boschi-Filho, Glueball spectra and Regge trajectories from a modified holographic softwall model, Phys. Lett.B 753 (2016) 419 [arXiv:1510.03372] [INSPIRE]. · Zbl 1367.83085 · doi:10.1016/j.physletb.2015.12.034
[62] E. Folco Capossoli, D. Li and H. Boschi-Filho, Pomeron and odderon Regge trajectories from a dynamical holographic model, Phys. Lett.B 760 (2016) 101 [arXiv:1601.05114] [INSPIRE]. · Zbl 1398.83094 · doi:10.1016/j.physletb.2016.06.049
[63] E. Folco Capossoli, D. Li and H. Boschi-Filho, Dynamical corrections to the anomalous holographic soft-wall model: the pomeron and the odderon, Eur. Phys. J.C 76 (2016) 320 [arXiv:1604.01647] [INSPIRE]. · Zbl 1398.83094 · doi:10.1140/epjc/s10052-016-4171-0
[64] E. D’Hoker and P. Kraus, Charged magnetic brane solutions in AdS5and the fate of the third law of thermodynamics, JHEP03 (2010) 095 [arXiv:0911.4518] [INSPIRE]. · Zbl 1271.83047 · doi:10.1007/JHEP03(2010)095
[65] E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP10 (2009) 088 [arXiv:0908.3875] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/088
[66] M. Ammon, J. Leiber and R.P. Macedo, Phase diagram of 4D field theories with chiral anomaly from holography, JHEP03 (2016) 164 [arXiv:1601.02125] [INSPIRE]. · Zbl 1388.83159 · doi:10.1007/JHEP03(2016)164
[67] K. Chelabi, Z. Fang, M. Huang, D. Li and Y.-L. Wu, Realization of chiral symmetry breaking and restoration in holographic QCD, Phys. Rev.D 93 (2016) 101901 [arXiv:1511.02721] [INSPIRE].
[68] K. Chelabi, Z. Fang, M. Huang, D. Li and Y.-L. Wu, Chiral phase transition in the soft-wall model of AdS/QCD, JHEP04 (2016) 036 [arXiv:1512.06493] [INSPIRE]. · doi:10.1007/JHEP04(2016)036
[69] U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP05 (2009) 033 [arXiv:0812.0792] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/033
[70] P. Colangelo, F. Giannuzzi and S. Nicotri, Holography, heavy-quark free energy and the QCD phase diagram, Phys. Rev.D 83 (2011) 035015 [arXiv:1008.3116] [INSPIRE].
[71] D. Li, S. He, M. Huang and Q.-S. Yan, Thermodynamics of deformed AdS5model with a positive/negative quadratic correction in graviton-dilaton system, JHEP09 (2011) 041 [arXiv:1103.5389] [INSPIRE]. · Zbl 1301.81304 · doi:10.1007/JHEP09(2011)041
[72] R.-G. Cai, S. He and D. Li, A hQCD model and its phase diagram in Einstein-Maxwell-dilaton system, JHEP03 (2012) 033 [arXiv:1201.0820] [INSPIRE]. · Zbl 1309.81263 · doi:10.1007/JHEP03(2012)033
[73] D. Li, J. Liao and M. Huang, Enhancement of jet quenching around phase transition: result from the dynamical holographic model, Phys. Rev.D 89 (2014) 126006 [arXiv:1401.2035] [INSPIRE].
[74] D. Li, S. He and M. Huang, Temperature dependent transport coefficients in a dynamical holographic QCD model, JHEP06 (2015) 046 [arXiv:1411.5332] [INSPIRE]. · Zbl 1388.83292 · doi:10.1007/JHEP06(2015)046
[75] Y. Yang and P.-H. Yuan, A refined holographic QCD model and QCD phase structure, JHEP11 (2014) 149 [arXiv:1406.1865] [INSPIRE]. · doi:10.1007/JHEP11(2014)149
[76] Y. Yang and P.-H. Yuan, Confinement-deconfinement phase transition for heavy quarks in a soft wall holographic QCD model, JHEP12 (2015) 161 [arXiv:1506.05930] [INSPIRE]. · Zbl 1388.83059 · doi:10.1007/JHEP12(2015)161
[77] Z. Fang, S. He and D. Li, Chiral and deconfining phase transitions from holographic QCD study, Nucl. Phys.B 907 (2016) 187 [arXiv:1512.04062] [INSPIRE]. · Zbl 1336.81092 · doi:10.1016/j.nuclphysb.2016.04.003
[78] A. Cherman, T.D. Cohen and E.S. Werbos, The chiral condensate in holographic models of QCD, Phys. Rev.C 79 (2009) 045203 [arXiv:0804.1096] [INSPIRE].
[79] S. He, M. Huang and Q.-S. Yan, Logarithmic correction in the deformed AdS5model to produce the heavy quark potential and QCD β-function, Phys. Rev.D 83 (2011) 045034 [arXiv:1004.1880] [INSPIRE].
[80] R. Critelli, S.I. Finazzo, M. Zaniboni and J. Noronha, Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes, Phys. Rev.D 90 (2014) 066006 [arXiv:1406.6019] [INSPIRE].
[81] R. Rougemont, R. Critelli and J. Noronha, Anisotropic heavy quark potential in strongly-coupled N = 4 SYM in a magnetic field, Phys. Rev.D 91 (2015) 066001 [arXiv:1409.0556] [INSPIRE].
[82] S.I. Finazzo, R. Critelli, R. Rougemont and J. Noronha, Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields, Phys. Rev.D 94 (2016) 054020 [arXiv:1605.06061] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.