×

Phase diagram of 4D field theories with chiral anomaly from holography. (English) Zbl 1388.83159

Summary: Within gauge/gravity duality, we study the class of four dimensional CFTs with chiral anomaly described by Einstein-Maxwell-Chern-Simons theory in five dimensions. In particular we determine the phase diagram at finite temperature, chemical potential and magnetic field. At high temperatures the solution is given by an electrically and magnetically charged AdS Reissner-Nordstroem black brane. For sufficiently large Chern-Simons coupling and at sufficiently low temperatures and small magnetic fields, we find a new phase with helical order, breaking translational invariance spontaneously. For the Chern-Simons couplings studied, the phase transition is second order with mean field exponents. Since the entropy density vanishes in the limit of zero temperature we are confident that this is the true ground state which is the holographic version of a chiral magnetic spiral.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cambridge, U.K. (2015). · Zbl 1327.81001 · doi:10.1017/CBO9780511846373
[3] H. Nastase, Introduction to the AdS/CFT Correspondence, Cambridge University Press, Cambridge, U.K. (2015). · doi:10.1017/CBO9781316090954
[4] J. Zaanen, Y. Liu, Y.-W. Sun and K. Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press, Cambridge, U.K. (2016).
[5] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [INSPIRE]. · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[6] C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys.A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE]. · Zbl 1180.82218
[7] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys.2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE]. · Zbl 1216.81118 · doi:10.1155/2010/723105
[8] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE]. · Zbl 1325.81004
[9] E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP10 (2009) 088 [arXiv:0908.3875] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/088
[10] E. D’Hoker and P. Kraus, Charged Magnetic Brane Solutions in AdS (5) and the fate of the third law of thermodynamics, JHEP03 (2010) 095 [arXiv:0911.4518] [INSPIRE]. · Zbl 1271.83047 · doi:10.1007/JHEP03(2010)095
[11] E. D’Hoker and P. Kraus, Holographic Metamagnetism, Quantum Criticality and Crossover Behavior, JHEP05 (2010) 083 [arXiv:1003.1302] [INSPIRE]. · Zbl 1287.83029 · doi:10.1007/JHEP05(2010)083
[12] E. D’Hoker and P. Kraus, Magnetic Field Induced Quantum Criticality via new Asymptotically AdS5Solutions, Class. Quant. Grav.27 (2010) 215022 [arXiv:1006.2573] [INSPIRE]. · Zbl 1206.83072 · doi:10.1088/0264-9381/27/21/215022
[13] E. D’Hoker and P. Kraus, Charge Expulsion from Black Brane Horizons and Holographic Quantum Criticality in the Plane, JHEP09 (2012) 105 [arXiv:1202.2085] [INSPIRE]. · doi:10.1007/JHEP09(2012)105
[14] E. D’Hoker and P. Kraus, Quantum Criticality via Magnetic Branes, Lect. Notes Phys.871 (2013) 469 [arXiv:1208.1925] [INSPIRE]. · doi:10.1007/978-3-642-37305-3_18
[15] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE]. · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
[16] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP12 (2008) 015 [arXiv:0810.1563] [INSPIRE]. · Zbl 1329.81390 · doi:10.1088/1126-6708/2008/12/015
[17] S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP11 (2008) 033 [arXiv:0805.2960] [INSPIRE]. · doi:10.1088/1126-6708/2008/11/033
[18] M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On holographic p-wave Superfluids with Back-reaction, Phys. Lett.B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE]. · doi:10.1016/j.physletb.2010.02.021
[19] A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev.D 86 (2012) 064010 [arXiv:1204.1734] [INSPIRE].
[20] S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
[21] H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev.D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].
[22] J. Erdmenger, B. Herwerth, S. Klug, R. Meyer and K. Schalm, S-Wave Superconductivity in Anisotropic Holographic Insulators, JHEP05 (2015) 094 [arXiv:1501.07615] [INSPIRE]. · Zbl 1388.83230 · doi:10.1007/JHEP05(2015)094
[23] O. Domenech, M. Montull, A. Pomarol, A. Salvio and P.J. Silva, Emergent Gauge Fields in Holographic Superconductors, JHEP08 (2010) 033 [arXiv:1005.1776] [INSPIRE]. · Zbl 1291.82138 · doi:10.1007/JHEP08(2010)033
[24] S. Bolognesi and D. Tong, Monopoles and Holography, JHEP01 (2011) 153 [arXiv:1010.4178] [INSPIRE]. · Zbl 1214.81191 · doi:10.1007/JHEP01(2011)153
[25] M. Ammon, J. Erdmenger, P. Kerner and M. Strydom, Black Hole Instability Induced by a Magnetic Field, Phys. Lett.B 706 (2011) 94 [arXiv:1106.4551] [INSPIRE]. · doi:10.1016/j.physletb.2011.10.067
[26] A. Almuhairi and J. Polchinski, Magnetic AdS × R2: Supersymmetry and stability, arXiv:1108.1213 [INSPIRE].
[27] Y.-Y. Bu, J. Erdmenger, J.P. Shock and M. Strydom, Magnetic field induced lattice ground states from holography, JHEP03 (2013) 165 [arXiv:1210.6669] [INSPIRE]. · doi:10.1007/JHEP03(2013)165
[28] S. Cremonini and A. Sinkovics, Spatially Modulated Instabilities of Geometries with Hyperscaling Violation, JHEP01 (2014) 099 [arXiv:1212.4172] [INSPIRE]. · doi:10.1007/JHEP01(2014)099
[29] M. Montull, O. Pujolàs, A. Salvio and P.J. Silva, Magnetic Response in the Holographic Insulator/Superconductor Transition, JHEP04 (2012) 135 [arXiv:1202.0006] [INSPIRE]. · doi:10.1007/JHEP04(2012)135
[30] A. Salvio, Holographic Superfluids and Superconductors in Dilaton-Gravity, JHEP09 (2012) 134 [arXiv:1207.3800] [INSPIRE]. · doi:10.1007/JHEP09(2012)134
[31] A. Salvio, Transitions in Dilaton Holography with Global or Local Symmetries, JHEP03 (2013) 136 [arXiv:1302.4898] [INSPIRE]. · Zbl 1342.83071 · doi:10.1007/JHEP03(2013)136
[32] N. Bao, S. Harrison, S. Kachru and S. Sachdev, Vortex Lattices and Crystalline Geometries, Phys. Rev.D 88 (2013) 026002 [arXiv:1303.4390] [INSPIRE].
[33] N. Jokela, M. Jarvinen and M. Lippert, Gravity dual of spin and charge density waves, JHEP12 (2014) 083 [arXiv:1408.1397] [INSPIRE]. · doi:10.1007/JHEP12(2014)083
[34] A. Donos and J.P. Gauntlett, Minimally packed phases in holography, arXiv:1512.06861 [INSPIRE]. · Zbl 1388.83048
[35] G. Basar, G.V. Dunne and D.E. Kharzeev, Chiral Magnetic Spiral, Phys. Rev. Lett.104 (2010) 232301 [arXiv:1003.3464] [INSPIRE]. · doi:10.1103/PhysRevLett.104.232301
[36] K.-Y. Kim, B. Sahoo and H.-U. Yee, Holographic chiral magnetic spiral, JHEP10 (2010) 005 [arXiv:1007.1985] [INSPIRE]. · Zbl 1291.81391 · doi:10.1007/JHEP10(2010)005
[37] A. Ballon-Bayona, K. Peeters and M. Zamaklar, A chiral magnetic spiral in the holographic Sakai-Sugimoto model, JHEP11 (2012) 164 [arXiv:1209.1953] [INSPIRE]. · doi:10.1007/JHEP11(2012)164
[38] E. Fradkin, S.A. Kivelson, M.J. Lawler, J.P. Eisenstein and A.P. MacKenzie, Nematic Fermi Fluids in Condensed Matter Physics, Annu. Rev. Condens. Matter Phys.1 (2010) 153 [arXiv:0910.4166]. · doi:10.1146/annurev-conmatphys-070909-103925
[39] A. Buchel and J.T. Liu, Gauged supergravity from type IIB string theory on Yp,qmanifolds, Nucl. Phys.B 771 (2007) 93 [hep-th/0608002] [INSPIRE]. · Zbl 1117.81113 · doi:10.1016/j.nuclphysb.2007.03.001
[40] J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with M-theory duals, JHEP02 (2007) 049 [hep-th/0611219] [INSPIRE]. · doi:10.1088/1126-6708/2007/02/049
[41] J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev.D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE]. · Zbl 1181.83184
[42] E.O. Colgáin, M.M. Sheikh-Jabbari, J.F. Vázquez-Poritz, H. Yavartanoo and Z. Zhang, Warped Ricci-flat reductions, Phys. Rev.D 90 (2014) 045013 [arXiv:1406.6354] [INSPIRE].
[43] M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE]. · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[44] V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [INSPIRE]. · Zbl 0946.83013 · doi:10.1007/s002200050764
[45] M. Taylor, More on counterterms in the gravitational action and anomalies, hep-th/0002125 [INSPIRE].
[46] I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in Holography, JHEP05 (2011) 081 [arXiv:1102.4577] [INSPIRE]. · Zbl 1296.81122 · doi:10.1007/JHEP05(2011)081
[47] S. Janiszewski and M. Kaminski, Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev.D 93 (2016) 025006 [arXiv:1508.06993] [INSPIRE].
[48] J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative Superfluid dynamics from gravity, JHEP04 (2011) 125 [arXiv:1101.3332] [INSPIRE]. · doi:10.1007/JHEP04(2011)125
[49] A. Donos, J.P. Gauntlett and C. Pantelidou, Competing p-wave orders, Class. Quant. Grav.31 (2014) 055007 [arXiv:1310.5741] [INSPIRE]. · Zbl 1292.83016 · doi:10.1088/0264-9381/31/5/055007
[50] M. Rogatko, First Law of Black Rings Thermodynamics in Higher Dimensional Chern-Simons Gravity, Phys. Rev.D 75 (2007) 024008 [hep-th/0611260] [INSPIRE].
[51] N.V. Suryanarayana and M.C. Wapler, Charges from Attractors, Class. Quant. Grav.24 (2007) 5047 [arXiv:0704.0955] [INSPIRE]. · Zbl 1206.83107 · doi:10.1088/0264-9381/24/20/009
[52] R. Meinel, M. Ansorg, A. Kleinwächter, G. Neugebauer and D. Petroff, Relativistic figures of equilibrium, Cambridge University Press, (2008). · Zbl 1156.83002
[53] R.P. Macedo and M. Ansorg, Axisymmetric fully spectral code for hyperbolic equations, J. Comput. Phys.276 (2014) 357 [arXiv:1402.7343] [INSPIRE]. · Zbl 1349.65523 · doi:10.1016/j.jcp.2014.07.040
[54] J.P. Boyd, Chebyshev and Fourier Spectral Methods (Second Edition, Revised). Dover Publications, New York, U.S.A. (2001). · Zbl 0994.65128
[55] C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral Methods: Fundamentals in Single Domains. Springer, Berlin, Germany (2006). · Zbl 1093.76002
[56] P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP07 (2014) 086 [arXiv:1309.1439] [INSPIRE]. · Zbl 1421.81111 · doi:10.1007/JHEP07(2014)086
[57] O.J.C. Dias, J.E. Santos and B. Way, Numerical Methods for Finding Stationary Gravitational Solutions, arXiv:1510.02804 [INSPIRE]. · Zbl 1346.83002
[58] M. Kalisch and M. Ansorg, Highly Deformed Non-uniform Black Strings in Six Dimensions, arXiv:1509.03083 [INSPIRE]. · Zbl 1351.83028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.