×

A geometric proof of Bourgain’s \(L^2\) estimate of maximal operators along analytic vector fields. (English) Zbl 1377.42019

Let \(\Omega \in {\mathbb R}^2\) be a bounded open set and \(v: \Omega' \to S^1\) be a unit vector field defined on a neighborhood \(\Omega'\) of the closure \(\overline{\Omega}\). For a fixed small positive number \(\varepsilon_0>0\), define the maximal operator associated with the vector field \(v\) truncated at the scale \(\varepsilon_0\) by \[ M_{v, \varepsilon_0}f(x) := \sup_{\varepsilon < \varepsilon_0} \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} | f(x+tv(x))| \, dt. \] J. Bourgain [Lond. Math. Soc. Lect. Note Ser. 137, 111–132 (1989; Zbl 0692.42006)].
proved that if \(v\) is real analytic on \(\Omega'\) then \(M_{v, \varepsilon_0}\) is bounded on \(L^2(\Omega)\). The \(L^p\) bounds and its singular integral variant \[ H_{v, \varepsilon_0}f(x) := \sup_{\varepsilon < \varepsilon_0} \int_{-\varepsilon}^{\varepsilon} | f(x+tv(x))| \, \frac{dt}{t} \] were obtained by E. M. Stein and B. Street [Adv. Math. 229, No. 4, 2210–2238 (2012; Zbl 1242.42010)] via a very different method.
The author gives a geometric proof of Bourgain’s results by using tools developed by M. T. Lacey and X. Li [Trans. Am. Math. Soc. 358, No. 9, 4099–4117 (2006; Zbl 1095.42010); Mem. Am. Math. Soc. 965, i-viii, 72 p. (2010; Zbl 1190.42005)].

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory

References:

[1] Bateman, M.: Single annulus \[L^p\] Lp estimates for Hilbert transforms along vector fields. Rev. Mat. Iberoam. 29(3), 1021-1069 (2013) · Zbl 1283.42019 · doi:10.4171/RMI/748
[2] Bateman, M., Thiele, \[C.: L^p\] Lp estimates for the Hilbert transforms along a one-variable vector field. Anal. PDE 6(7), 1577-1600 (2013) · Zbl 1285.42014 · doi:10.2140/apde.2013.6.1577
[3] Bourgain, J.: A remark on the maximal function associated to an analytic vector field. Analysis at Urbana, vol. I (Urbana, IL, 1986-1987), pp. 111-132, London Mathematical Society Lecture Note Series, 137, Cambridge University Press, Cambridge (1989) · Zbl 1285.42014
[4] Christ, M., Nagel, A., Stein, E., Wainger, S.: Singular and maximal Radon transforms: analysis and geometry. Ann. Math. 150(2), 489-577 (1999) · Zbl 0960.44001 · doi:10.2307/121088
[5] Guo, S.: Hilbert transform along measurable vector fields constant on Lipschitz curves: \[L^2\] L2 boundedness. Anal. PDE 8(5), 1263-1288 (2015) · Zbl 1323.42013 · doi:10.2140/apde.2015.8.1263
[6] Lacey, M., Li, X.: Maximal theorems for the directional Hilbert transform on the plane. Trans. Am. Math. Soc. 358(9), 4099-4117 (2006) · Zbl 1095.42010 · doi:10.1090/S0002-9947-06-03869-4
[7] Lacey, M., Li, X.: On a conjecture of E.M. Stein on the Hilbert transform on vector fields. Mem. Am. Math. Soc. 205 (965), viii+72 (2010). ISBN: 978-0-8218-4540-0 · Zbl 1190.42005
[8] Stein, E., Street, B.: Multi-parameter singular radon transforms III: real analytic surfaces. Adv. Math. 229(4), 2210-2238 (2012) · Zbl 1242.42010 · doi:10.1016/j.aim.2011.11.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.