×

Multi-parameter singular Radon transforms III: Real analytic surfaces. (English) Zbl 1242.42010

The authors treat operators of the form \[ Tf(x)=\psi(x)\int f\bigl(\gamma_t(x)\bigr)K(t)\,dt, \] where \(\psi\in C_0^\infty(\mathbb R^n)\) is supported near \(0\), \(\gamma_t(x):\mathbb R_0^N\times\mathbb R_0^n \rightarrow \mathbb R^n\) is a germ of a real analytic function (defined on a neighborhood of \((0,0)\)) satisfying \(\gamma_0(x)\equiv x\), \(K\) is a multi-parameter distribution kernel, supported near \(0\in\mathbb R^N\). As a main example, they take a product kernel, i.e. a kernel satisfying \(|\partial_{t_1}^{\alpha_1}\cdots\partial_{t_\nu}^{\alpha_\nu}K(t)|\lesssim |t_1|^{-N_1-|\alpha_1|}\cdots|t_1|^{-N_1-|\alpha_1|}\), along with certain cancellation conditions, where \(\mathbb R^N=\mathbb R^{N_1}\times\cdots\times\mathbb R^{N_\nu}\). If \(\nu=1\), this is a standard Calderón-Zygmund kernel supported near \(0\), and \(L^p\) boundedness of \(T\) can be shown rather easily. But in the multi-parameter case the study of \(T\) is difficult. A prototype was studied in the work of M. Christ, A. Nagel, E. M. Stein and S. Wainger [Ann. Math. (2) 150, No. 2, 489–577 (1999; Zbl 0960.44001)]. The authors develop it in a series of three papers. This paper is the third one. The first two dealt with the general situation when \(\gamma\) is \(C^\infty\), instead of real analytic. They study also maximal operators of the form \[ \mathcal M f(x)=\sup_{0<\delta_1,\dots,\delta_\nu\leq a}\psi(x)\int|f\bigl( \gamma_{(\delta_1t,\dots,\delta_\nu t)}(x)\bigr)|\,dt_1\cdots dt_\nu, \] where \(\psi\) is as above with \(\psi\geq0\), and \(a>0\) is small.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
26E05 Real-analytic functions
32B05 Analytic algebras and generalizations, preparation theorems

Citations:

Zbl 0960.44001

References:

[1] Bourgain, J., A remark on the maximal function associated to an analytic vector field, (Analysis at Urbana, vol. I (Urbana, IL, 1986-1987). Analysis at Urbana, vol. I (Urbana, IL, 1986-1987), London Math. Soc. Lecture Note Ser., vol. 137 (1989), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 111-132, MR MR1009171 (90h:42028) · Zbl 0692.42006
[2] Christ, Michael, The strong maximal function on a nilpotent group, Trans. Amer. Math. Soc., 331, 1, 1-13 (1992), MR MR1104197 (92j:42018) · Zbl 0765.43002
[3] Christ, Michael; Nagel, Alexander; Stein, Elias M.; Wainger, Stephen, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2), 150, 2, 489-577 (1999), MR MR1726701 (2000j:42023) · Zbl 0960.44001
[4] Galligo, André, Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier (Grenoble), 29, 2, vii (1979), 107-184, MR MR539695 (81e:32009) · Zbl 0412.32011
[5] Lobry, Claude, Contrôlabilité des systèmes non linéaires, SIAM J. Control, 8, 573-605 (1970), MR MR0271979 (42 #6860) · Zbl 0207.15201
[6] Nagano, Tadashi, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan, 18, 398-404 (1966), MR MR0199865 (33 #8005) · Zbl 0147.23502
[7] Nagel, Alexander; Wainger, Stephen, \(L^2\) boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer. J. Math., 99, 4, 761-785 (1977), MR MR0450901 (56 #9192) · Zbl 0374.44003
[8] Stefan, P., Integrability of systems of vector fields, J. Lond. Math. Soc. (2), 21, 3, 544-556 (1980), MR 577729 (81h:49026) · Zbl 0432.58002
[9] Stein, Elias M.; Street, Brian, Multi-parameter singular Radon transforms, Math. Res. Lett., 18, 2, 257-277 (2011) · Zbl 1239.42019
[10] Elias M. Stein, Brian Street, Multi-parameter singular Radon transforms II: the \(L^p\); Elias M. Stein, Brian Street, Multi-parameter singular Radon transforms II: the \(L^p\) · Zbl 1239.42019
[11] Street, Brian, Multi-parameter Carnot-Carathéodory balls and the theorem of Frobenius, Rev. Mat. Iberoam., 27, 2, 645-732 (2011) · Zbl 1222.53036
[12] Brian Street, Multi-parameter singular Radon transforms I: the \(L^2\); Brian Street, Multi-parameter singular Radon transforms I: the \(L^2\) · Zbl 1281.44003
[13] Zariski, Oscar; Samuel, Pierre, Commutative algebra, vol. II, Grad. Texts in Math., vol. 29 (1975), Springer-Verlag: Springer-Verlag New York, MR MR0389876 (52 #10706) · Zbl 0313.13001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.