×

On a subclass of close-to-convex harmonic mappings. (English) Zbl 1345.31004

Summary: We introduce a new subclass \(\mathcal{M}(\alpha,\beta)\) of close-to-convex harmonic mappings in the unit disk, which originates from the work of P. Mocanu on univalent mappings. We also give coefficient estimates, and discuss the Fekete-Szegő problem, for this class of mappings. Furthermore, we consider growth, covering and area theorems of the class. In addition, we determine a disk \(|z|<r\) in which the partial sum \(s_{m,n}(f)(z)\) is close-to-convex for each function of the class \(\mathcal{M}(\alpha,\beta)\). Finally, for certain values of the parameters \(\alpha\) and \(\beta\), we solve the radii problems related to starlikeness and convexity of functions of this class.

MSC:

31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
Full Text: DOI

References:

[1] DOI: 10.1017/CBO9780511546600 · doi:10.1017/CBO9780511546600
[2] DOI: 10.5186/aasfm.1984.0905 · Zbl 0506.30007 · doi:10.5186/aasfm.1984.0905
[3] Ponnusamy S, Top. Mod. Funct. Theory 19 pp 267– (2013)
[4] DOI: 10.1016/S1874-5709(05)80011-3 · doi:10.1016/S1874-5709(05)80011-3
[5] DOI: 10.1112/jlms/s1-8.2.85 · Zbl 0006.35302 · doi:10.1112/jlms/s1-8.2.85
[6] Abdel H, Proc. Am. Math. Soc 114 pp 345– (1992)
[7] Koepf W, Proc. Am. Math. Soc 101 pp 89– (1987)
[8] DOI: 10.1007/BF01194100 · Zbl 0635.30020 · doi:10.1007/BF01194100
[9] DOI: 10.1007/BF01448843 · JFM 54.0336.02 · doi:10.1007/BF01448843
[10] DOI: 10.2307/1968770 · Zbl 0063.06519 · doi:10.2307/1968770
[11] DOI: 10.1137/0519107 · Zbl 0661.30012 · doi:10.1137/0519107
[12] DOI: 10.1016/j.na.2013.09.009 · Zbl 1291.30096 · doi:10.1016/j.na.2013.09.009
[13] DOI: 10.1080/17476933.2014.936862 · Zbl 1312.31003 · doi:10.1080/17476933.2014.936862
[14] DOI: 10.1016/j.na.2013.05.016 · Zbl 1279.30038 · doi:10.1016/j.na.2013.05.016
[15] DOI: 10.1016/j.jmaa.2013.06.021 · Zbl 1307.31002 · doi:10.1016/j.jmaa.2013.06.021
[16] DOI: 10.1016/j.na.2014.06.005 · Zbl 1320.31006 · doi:10.1016/j.na.2014.06.005
[17] DOI: 10.1007/s11785-010-0052-y · Zbl 1279.30020 · doi:10.1007/s11785-010-0052-y
[18] Mocanu PT, Rev. Anal. Numér. Théor. Approx 10 pp 75– (1981)
[19] DOI: 10.1007/s11785-010-0056-7 · Zbl 1279.30011 · doi:10.1007/s11785-010-0056-7
[20] DOI: 10.1216/RMJ-2014-44-3-753 · Zbl 1298.30001 · doi:10.1216/RMJ-2014-44-3-753
[21] DOI: 10.1080/17476933.2011.647002 · Zbl 1277.31005 · doi:10.1080/17476933.2011.647002
[22] DOI: 10.1155/2012/413965 · Zbl 1259.30017 · doi:10.1155/2012/413965
[23] DOI: 10.2298/FIL1001063K · Zbl 1313.30087 · doi:10.2298/FIL1001063K
[24] DOI: 10.1080/17476933.2012.759565 · Zbl 1295.31005 · doi:10.1080/17476933.2012.759565
[25] DOI: 10.1080/17476933.2012.727409 · Zbl 1291.30091 · doi:10.1080/17476933.2012.727409
[26] DOI: 10.1007/BF03321849 · Zbl 1257.30012 · doi:10.1007/BF03321849
[27] DOI: 10.1007/s00009-014-0443-9 · Zbl 1337.31004 · doi:10.1007/s00009-014-0443-9
[28] Avci Y, Ann. Univ. Mariae Curie Skłodowska (Sect A) 44 pp 1– (1990)
[29] Li L, J. Anal 22 pp 77– (2014)
[30] Pommerenke C, Univalent functions (1975)
[31] Goodman AW, Univalent functions 1 (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.