×

Radius of convexity of partial sums of functions in the close-to-convex family. (English) Zbl 1291.30096

Summary: Let \(F\) denote the class of all normalized analytic functions \(f\) that are locally univalent in the unit disk \(|z|<1\) satisfying the condition \[ \mathrm{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>-\frac{1}{2} \] for \(|z|<1\). Functions in \(F\) are known to be close-to-convex (univalent) in the unit disk. This class plays a crucial role in the discussion on certain extremal problems for the class of complex-valued and sense-preserving harmonic convex functions and some other related problems in determining univalence criteria for sense-preserving harmonic mappings. In this article, we show that every section of a function in the class \(F\) is convex in the disk \(|z|<1/6\). The radius \(1/6\) is best possible. We conjecture that every section of functions in the family \(F\) is univalent and close-to-convex in the disk \(|z|<1/3\).

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C55 General theory of univalent and multivalent functions of one complex variable
33C05 Classical hypergeometric functions, \({}_2F_1\)
Full Text: DOI

References:

[1] Szegö, G., Zur Theorie der schlichten Abbildungen, Math. Ann., 100, 1, 188-211 (1928) · JFM 54.0336.02
[2] Duren, P. L., Univalent Functions (1983), Springer-Verlag · Zbl 0514.30001
[3] Robertson, M. S., The partial sums of multivalently star-like functions, Ann. of Math., 42, 829-838 (1941) · Zbl 0063.06519
[4] Ruscheweyh, St., On the radius of univalence of the partial sums of convex functions, Bull. Lond. Math. Soc., 4, 367-369 (1972) · Zbl 0261.30014
[5] Sheil-Small, T., A note on the partial sums of convex schlicht functions, Bull. Lond. Math. Soc., 2, 165-168 (1970) · Zbl 0217.09701
[7] MacGregor, T. H., Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104, 532-537 (1962) · Zbl 0106.04805
[8] Singh, R., Radius of convexity of partial sums of a certain power series, J. Aust. Math. Soc., 11, 4, 407-410 (1970) · Zbl 0215.12502
[9] Padmanabhan, K. S.; Parvatham, R., On the univalence and convexity of partial sums of a certain class of analytic functions whose derivatives have positive real part, Indian J. Math., 16, 67-77 (1974) · Zbl 0353.30008
[10] Ruscheweyh, St.; Sheil-Small, T., Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv., 48, 119-135 (1973) · Zbl 0261.30015
[11] Kalaj, D.; Ponnusamy, S.; Vuorinen, M., Radius of close-to-convexity of harmonic functions, Complex Var. Elliptic Equ. (2013), in print
[12] Li, L.; Ponnusamy, S., Injectivity of sections of univalent harmonic mappings, Nonlinear Anal., 89, 276-283 (2013) · Zbl 1279.30038
[13] Li, L.; Ponnusamy, S., Disk of convexity of sections of univalent harmonic functions, J. Math. Anal. Appl., 408, 589-596 (2013) · Zbl 1307.31002
[15] Clunie, J. G.; Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. AI, 9, 3-25 (1984) · Zbl 0506.30007
[16] Mocanu, P. T., Injective conditions in the complex plane, Complex Anal. Oper. Theory, 5, 759-786 (2011) · Zbl 1279.30020
[17] Bshouty, D.; Lyzzaik, A., Close-to-convexity criteria for planar harmonic mappings, Complex Anal. Oper. Theory, 5, 767-774 (2011) · Zbl 1279.30011
[19] Shah, G. M., On holomorphic functions convex in one direction, J. Indian Math. Soc. (N.S.), 37, 257-276 (1973) · Zbl 0329.30005
[20] Suffridge, T. J., Some special classes of conformal mappings, (Kühnau, Handbook of Complex Analysis: Geometric Function Theory, Vol. 2 (2005), Elsevier: Elsevier Amsterdam), 309-338 · Zbl 1069.30025
[21] Suffridge, T. J., Some remarks on convex maps of the unit disk, Duke Math. J., 37, 775-777 (1970) · Zbl 0206.36202
[22] Silvia, E. M., Subclasses of close-to-convex functions, Int. J. Math. Math. Sci., 6, 3, 449-458 (1983) · Zbl 0526.30013
[23] Ogawa, S., A note on close-to-convex functions II, J. Nara Gakugei Univ., 8, 2, 11-17 (1959)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.