×

A guide to the TV zoo. (English) Zbl 1342.94014

Burger, Martin (ed.) et al., Level set and PDE based reconstruction methods in imaging. Lecture notes given at the CIME summer school, Cetraro, Italy, September 2008. Cham: Springer; Florence: Fondazione CIME (ISBN 978-3-319-01711-2/pbk; 978-3-319-01712-9/ebook). Lecture Notes in Mathematics 2090. CIME Foundation Subseries, 1-70 (2013).
Summary: Total variation methods and similar approaches based on regularizations with \(\ell^{1}\)-type norms (and seminorms) have become a very popular tool in image processing and inverse problems due to peculiar features that cannot be realized with smooth regularizations. In particular total variation techniques had particular success due to their ability to realize cartoon-type reconstructions with sharp edges. Due to an explosion of new developments in this field within the last decade it is a difficult task to keep an overview of the major results in analysis, the computational schemes, and the application fields. With these lectures we attempt to provide such an overview, of course biased by our major lines of research.
We are focusing on the basic analysis of total variation methods and the extension of the original ROF-denoising model due various application fields. Furthermore we provide a brief discussion of state-of-the art computational methods and give an outlook to applications in different disciplines. 205 Refs.
For the entire collection see [Zbl 1277.94002].

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C25 Convex programming
Full Text: DOI

References:

[1] Abascal, J. F.; Chamorro-Servent, J.; Aguirre, J.; Vaquero, J. J.; Arridge, S.; Correia, T.; Ripoll, J.; Desco, M., Fluorescence diffuse optical tomography using the split Bregman method, Med. Phys., 38, 6275 (2011)
[2] Acar, R.; Vogel, C. R., Analysis of total variation penalty methods, Inverse Probl., 10, 1217-1229 (1994) · Zbl 0809.35151
[3] Adde, G.; Clerc, M.; Keriven, R., Imaging methods for MEG/EEG inverse problem, Int. J. Bioelectromagn., 7, 111-114 (2005)
[4] Almansa, A.; Caselles, V.; Haro, G.; Rouge, B., Restoration and zoom of irregularly sampled, blurred and noisy images by accurate total variation minimization with local constraints, Multiscale Mod. Simulat., 5, 235-272 (2006) · Zbl 1161.68822
[5] Ambrosio, L.; Tortorelli, V., Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \) - convergence, Comm. Pure Appl. Math., 43, 999-1036 (1990) · Zbl 0722.49020
[6] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems (2000), Oxford: Oxford University Press, Oxford · Zbl 0957.49001
[7] Andreu, F.; Ballester, C.; Caselles, V.; Mazon, J. M., Minimizing total variation flow, Differ. Integr. Equat., 14, 321-360 (2001) · Zbl 1020.35037
[8] Andreu, F.; Ballester, C.; Caselles, V.; Mazon, J. M., The Dirichlet problem for the total variation flow, J. Funct. Anal., 180, 347-403 (2001) · Zbl 0973.35109
[9] Andreu, F.; Caselles, V.; Diaz, J. I.; Mazon, J. M., Some qualitative properties for the total variation flow, J. Funct. Anal., 188, 516-547 (2002) · Zbl 1042.35018
[10] Ascher, U.; Haber, E., Computational Methods for Large Distributed Parameter Estimation Problems with Possible Discontinuities (2004), Inverse Problems, Design and Optimization, Rio: Symp, Inverse Problems, Design and Optimization, Rio
[11] Athavale, P.; Tadmor, E., Multiscale image representation using integro-differential equations, Inverse Probl. Imag., 3, 693-710 (2009) · Zbl 1185.68814
[12] Aubert, G.; Aujol, J. F., Modeling very oscillating signals, application to image processing, Appl. Math. Optim., 51, 163-182 (2005) · Zbl 1162.49306
[13] Aubert, G.; Aujol, J. F., A Variational approach to remove multiplicative noise, SIAM J. Appl. Math., 68, 925-946 (2008) · Zbl 1151.68713
[14] Aujol, J. F., Some first-order algorithms for total variation based image restoration, J. Math. Imag. Vis., 34, 307-327 (2009) · Zbl 1287.94012
[15] Aujol, J. F.; Chambolle, A., Dual norms and image decomposition models, IJCV, 63, 85-104 (2005) · Zbl 1371.94032
[16] Aujol, J. F.; Aubert, G.; Blanc-Feraud, L.; Chambolle, A., Image decomposition into a bounded variation component and an oscillating component, J. Math. Imag. Vis., 22, 71-88 (2005) · Zbl 1371.94031
[17] Aujol, J. F.; Gilboa, G.; Chan, T.; Osher, S., Structure-texture image decomposition - modeling, algorithms, and parameter selection, Int. J. Comput. Vis., 67, 111-136 (2006) · Zbl 1287.94011
[18] W. Baatz, M. Fornasier, P. Markowich, C.B. Schönlieb, Inpainting of ancient Austrian frescoes. Conference Proceedings of Bridges 2008, Leeuwarden, 2008, pp. 150-156
[19] Babacan, S. D.; Molina, R.; Katsaggelos, A. K., Variational Bayesian blind deconvolution using a total variation prior, IEEE Trans. Image Proc., 18, 12-26 (2009) · Zbl 1371.94479
[20] Bachmayr, M., Iterative Total Variation Methods for Nonlinear Inverse Problems, Master Thesis (2007), Linz: Johannes Kepler University, Linz
[21] Bachmayr, M.; Burger, M., Iterative total variation methods for nonlinear inverse problems, Inverse Probl., 25, 105004 (2009) · Zbl 1188.49028
[22] Ballester, C.; Caselles, V.; Igual, L.; Verdera, J.; Rouge, B., A variational model for P+XS image fusion, IJCV, 69, 43-58 (2006)
[23] Bardsley, J.; Luttman, A., Total variation-penalized Poisson likelihood estimation for ill-posed problems, Adv. Comp. Math., 31, 35-59 (2009) · Zbl 1171.94001
[24] Bazan, C., PDE-Based Image and Structure Enhancement for Electron Tomography of Mitochondria, PhD-Thesis (2009), San Diego: San Diego State University, San Diego
[25] Bellettini, G.; Caselles, V., The total variation flow in R^N, J. Differ. Equat., 184, 475-525 (2002) · Zbl 1036.35099
[26] Bellettini, G.; Caselles, V.; Novaga, M., Explicit solutions of the eigenvalue problem − div (Du∕|Du|) = u, SIAM J. Math. Anal., 36, 1095-1129 (2005) · Zbl 1162.35379
[27] M. Benning, Singular Regularization of Inverse Problems (PhD Thesis, WWU Münster, 2011) · Zbl 1225.65091
[28] Benning, M.; Burger, M., Error estimation with general fidelities, Electron. Trans. Numer. Anal., 38, 44-68 (2011) · Zbl 1285.47015
[29] Benning, M.; Brune, C.; Burger, M.; Müller, J., Higher-order TV methods—enhancement via Bregman iteration, J. Sci. Comput., 54, 2-3, 269-310 (2013) · Zbl 1308.94012
[30] Berkels, B.; Burger, M.; Droske, M.; Nemitz, O.; Rumpf, M.; Kobbelt, L.; Kuhlen, T.; Aach, T.; Westerman, R., Cartoon extraction based on anisotropic image classification, Vision, Modeling, and Visualization 2006: Proceedings (2006), IOS Press: Aachen, IOS Press
[31] J.M. Bioucas-Dias, M.A.T. Figueiredo, J.P. Oliveira, Total variation-based image deconvolution: a majorization-minimization approach, in 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, vol. 2, pp. II, 14-19 May 2006
[32] Block, K. T.; Uecker, M.; Frahm, J., Undersampled radial MRI with multiple coils, Iterative image reconstruction using a total variation constraint. Magn. Reson. Med., 57, 1086-1098 (2007)
[33] Blomgren, P.; Chan, T., Color TV: Total variation methods for restoration of vector valued images, IEEE Trans. Image Proc., 7, 304-309 (1998)
[34] Bonesky, T.; Kazimierski, K. S.; Maass, P.; Schöpfer, F.; Schuster, T., Minimization of Tikhonov functionals in Banach spaces, Abstr. Appl. Anal., 19, 192679 (2008) · Zbl 1357.49135
[35] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1-122 (2011) · Zbl 1229.90122
[36] Bredies, K.; Kunisch, K.; Pock, T., Total generalized variation, SIAM J. Imag. Sci., 3, 492-526 (2010) · Zbl 1195.49025
[37] Bregman, L. M., The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comp. Math. Math. Phys., 7, 200-217 (1967) · Zbl 0186.23807
[38] Breuss, M.; Brox, T.; Bürgel, A.; Sonar, T.; Weickert, J., Numerical aspects of TV flow, Numer. Algorithms, 41, 79-101 (2006) · Zbl 1116.65099
[39] Briani, A.; Chambolle, A.; Novaga, M.; Orlandi, G., On the gradient flow of a one-homogeneous functional, Preprint (2011), Pisa: SNS, Pisa · Zbl 1238.49015
[40] Brox, T.; Weickert, J.; Pajdla, T.; Matas, J., A TV flow based local scale measure for texture discrimination, Computer Vision - ECCV 2004, 578-590 (2004), Berlin: Springer, Berlin · Zbl 1098.68737
[41] Brox, T.; Welk, M.; Steidl, G.; Weickert, J.; Griffin, L. D.; Lillholm, M., Equivalence results for TV diffusion and TV regularization, Scale Space Methods in Computer Vision, 86-100 (2003), Berlin: Springer, Berlin · Zbl 1067.68722
[42] C. Brune, A. Sawatzky, M. Burger, Bregman-EM-TV methods with application to optical nanoscopy, in Proceedings of the 2nd International Conference on Scale Space and Variational Methods in Computer Vision. LNC, vol. 5567 (Springer, Berlin, 2009), pp. 235-246 · Zbl 1235.94016
[43] Brune, C.; Maurer, H.; Wagner, M., Detection of intensity and motion edges within optical flow via multidimensional control, SIAM J. Imag. Sci., 2, 1190-1210 (2009) · Zbl 1181.49029
[44] Brune, C.; Sawatzky, A.; Burger, M., Primal and dual Bregman methods with application to optical nanoscopy, Int. J. Comput. Vis., 92, 211-229 (2011) · Zbl 1235.94016
[45] Buades, A.; Coll, B.; Morel, J. M., A review of image denoising algorithms, with a new one, Multiscale Model. Simulat., 4, 490-530 (2005) · Zbl 1108.94004
[46] Burger, M.; Hintermüller, M., Projected gradient flows for BV / level set relaxation, PAMM, 5, 11-14 (2005) · Zbl 1391.76464
[47] Burger, M.; Osher, S., Convergence rates of convex variational regularization, Inverse Probl., 20, 1411-1421 (2004) · Zbl 1068.65085
[48] Burger, M.; Scherzer, O., Regularization methods for blind deconvolution and blind source separation problems, Math. Contr. Signals Syst., 14, 358-383 (2001) · Zbl 1002.93060
[49] Burger, M.; Gilboa, G.; Osher, S.; Xu, J., Nonlinear inverse scale space methods for image restoration, Comm. Math. Sci., 4, 179-212 (2006) · Zbl 1106.68117
[50] Burger, M.; Resmerita, E.; He, L., Error estimation for Bregman iterations and inverse scale space methods, Computing, 81, 109-135 (2007) · Zbl 1147.68790
[51] Burger, M.; Frick, K.; Osher, S.; Scherzer, O., Inverse total variation flow, SIAM Multiscale Mod. Simul., 6, 366-395 (2007) · Zbl 1147.49026
[52] Burger, M.; He, L.; Schönlieb, C. B., Cahn-Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imag. Sci., 2, 1129-1167 (2009) · Zbl 1180.49007
[53] M. Burger, M. Möller, M. Benning, S. Osher, An adaptive inverse scale space method for compressed sensing. Math. Comput. (2012, to appear) · Zbl 1260.49053
[54] Burger, M.; Franek, M.; Schönlieb, C.-B., Regularized regression and density estimation based on optimal transport, Appl. Math. Res. Express, 2012, 209-253 (2012) · Zbl 1318.62122
[55] Cai, J.; Osher, S.; Shen, Z., Linearized Bregman iterations for compressed sensing, Math. Comput., 78, 1515-1536 (2008) · Zbl 1198.65102
[56] Cai, J.; Osher, S.; Shen, Z., Convergence of the linearized Bregman iteration for l_1-norm minimization, Math. Comput., 78, 2127-2136 (2009) · Zbl 1198.65103
[57] Cai, J.; Osher, S.; Shen, Z., Linearized Bregman iteration for frame based image deblurring, SIAM J. Imag. Sci., 2, 226-252 (2009) · Zbl 1175.94010
[58] Caselles, V.; Chambolle, A.; Novaga, M., The discontinuity set of solutions of the TV denoising problem and some extensions, MMS, 6, 879-894 (2007) · Zbl 1145.49024
[59] Caselles, V.; Chambolle, A.; Novaga, M., Regularity for solutions of the total variation denoising problem, Rev. Mat. Iberoamericana, 27, 233-252 (2011) · Zbl 1228.94005
[60] Chambolle, A., An algorithm for total variation regularization and denoising, J. Math. Imag. Vis., 20, 89-97 (2004) · Zbl 1366.94048
[61] Chambolle, A.; Lions, P. L., Image recovery via total variational minimization and related problems, Numer. Math., 76, 167-188 (1997) · Zbl 0874.68299
[62] Chambolle, A.; DeVore, R.; Lee, N. Y.; Lucier, B., Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage, IEEE Trans. Image Proc., 7, 319-335 (1998) · Zbl 0993.94507
[63] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, T. Pock, An Introduction to total variation for image analysis, in Theoretical Foundations and Numerical Methods for Sparse Recovery, ed. by M. Fornasier. Radon Series in Applied and Computational Mathematics (De Gruyter, Berlin, 2010) · Zbl 1209.94004
[64] Chan, T.; Shen, J., Mathematical models for local non-texture inpainting, SIAM J. Appl. Math., 62, 1019-1043 (2001) · Zbl 1050.68157
[65] Chan, T.; Shen, J., Image Processing and Analysis (2005), Philadelphia: SIAM, Philadelphia · Zbl 1095.68127
[66] Chan, T.; Vese, L. A., Active contours without edges, IEEE Trans. Image Process., 10, 266-277 (2001) · Zbl 1039.68779
[67] Chan, T.; Wong, C. W., Total variation blind deconvolution, IEEE Trans. Imag. Proc., 7, 370-375 (1998)
[68] T. Chan, A. Marquina, P. Mulet, Second order differential functionals in total variation-based image restoration. CAM Report 98-35, UCLA, 1998 · Zbl 0968.68175
[69] Chan, T.; Kang, S. H.; Shen, J., Total variation denoising and enhancement of color images based on the CB and HSV color models, J. Vis. Comm. Image Represent., 12, 422-435 (2001)
[70] Chan, T. F.; Esedoglu, S., Aspects of total variation regularized L^1 function approximation, SIAM J. Appl. Math., 65, 1817-1837 (2005) · Zbl 1096.94004
[71] Chan, T. F.; Esedoglu, S.; Nikolova, M., Algorithms for finding global minimizers of denoising and segmentation models, SIAM J. Appl. Math., 66, 1632-1648 (2006) · Zbl 1117.94002
[72] Chavent, G.; Kunisch, K., Regularization of linear least squares problems by total bounded variation, ESAIM Cont. Optim. Calc. Var., 2, 359-376 (1997) · Zbl 0890.49010
[73] O. Christiansen, T.-M. Lee, J. Lie, U. Sinha, T.F. Chan, Total variation regularization of matrix-valued images. Int. J. Biomed. Imaging 2007, Article ID 27432, 11 p. (2007). doi:10.1155/2007/27432
[74] L. Cinque, G. Morrone, Retinex vombined with total variation for image illumination normalization, in Image Analysis and Processing Ű ICIAP 2009. LNCS, vol. 5716 (Springer, Berlin, 2009), pp. 958-964
[75] Comelli, S., A Novel Class of Priors for Edge-Preserving Methods in Bayesian Inversion (2011), Master thesis: University of Milano, Master thesis
[76] R. Deriche, P. Kornprobst, G. Aubert, Optical flow estimation while preserving its discontinuities: A variational approach, in Proceedings of the Asian Conference on Computer Vision, ACCVŠ95, Singapore, 1995
[77] Dey, N.; Blanc-Feraud, L.; Zimmer, C.; Kam, Z.; Roux, P.; Olivo-Marin, J. C.; Zerubia, J., Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microsc. Res. Tech., 69, 260-266 (2006)
[78] Dobson, D.; Scherzer, O., Analysis of regularized total variation penalty methods for denoising, Inverse Probl., 12, 601-617 (1996) · Zbl 0866.65041
[79] Donoho, D.; Johnstone, I., Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81, 425-455 (1994) · Zbl 0815.62019
[80] Douiri, A.; Schweiger, M.; Riley, J.; Arridge, S. R., Local diffusion regularisation method for optical tomography reconstruction using robust statistics, Optic. Lett., 30, 2439-2441 (2005)
[81] Ekeland, I.; Temam, R., Convex Analysis and Variational Problems (1999), Philadelphia: Corrected Reprint Edition (SIAM, Philadelphia · Zbl 0939.49002
[82] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (1996), Dordrecht: Kluwer, Dordrecht · Zbl 0859.65054
[83] Esedoglu, S.; Osher, S. J., Decomposition of images by the anisotropic Rudin-Osher-Fatemi model, Comm. Pure Appl. Math., 57, 1609-1626 (2004) · Zbl 1083.49029
[84] E. Esser, Primal Dual Algorithms for Convex Models and Applications to Image Restoration, Registration and Nonlocal Inpainting. PhD thesis, UCLA, 2010
[85] Esser, E.; Zhang, X.; Chan, T., A general framework for a class of first order primal-dual algorithms for tv minimization, SIAM J. Imag. Sci., 3, 1015-1046 (2010) · Zbl 1206.90117
[86] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions (1992), Boca Raton: CRC Press, Boca Raton · Zbl 0804.28001
[87] Feng, X.; Prohl, A., Analysis of total variation flow and its finite element approximations, ESAIM: Math. Mod. Numer. Anal., 37, 533-556 (2003) · Zbl 1050.35004
[88] Flemming, J.; Hofmann, B., Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities, Inverse Probl., 27, 085001 (2011) · Zbl 1233.47053
[89] Fornasier, M.; Emmer, M.; Quarteroni, A.; Sciences, Applied; Life, Real, Mathematics enters the picture, Mathknow Mathematics, 217-228 (2009), Milan: Springer, Milan · Zbl 1397.00036
[90] Fornasier, M.; Teschke, G.; Ramlau, R., A comparison of joint sparsity and total variation minimization algorithms in a real-life art restoration problem, Adv. Comput. Math., 31, 301-329 (2009)
[91] Freiberger, M.; Clason, C.; Scharfetter, H., Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach, Appl. Optic., 49, 3741-3747 (2010)
[92] M.A. Freitag, N.K. Nichols, C.J. Budd, Resolution of sharp fronts in the presence of model error in variational data assimilation, Preprint (University of Bath, 2010)
[93] Gao, H. Y.; Bruce, A. G., WaveShrink with firm shrinkage, Statist. Sinica, 7, 855-874 (1997) · Zbl 1067.62529
[94] Geman, S.; Geman, D., Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6, 721-741 (1984) · Zbl 0573.62030
[95] Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1984), Boston: Birkhäuser, Boston · Zbl 0545.49018
[96] Goldstein, T.; Osher, S., The split Bregman method for L1 regularized problems, SIAM J. Imag. Sci., 2, 323-343 (2009) · Zbl 1177.65088
[97] Goris, B.; Van den Broek, M. W.; Batenburg, K. J.; Mezerji, H. H.; Bals, S., Electron tomography based on a total variation minimization reconstruction technique, Ultramicroscopy, 113, 120-130 (2012)
[98] Grasmair, M., Generalized Bregman distances and convergence rates for non-convex regularization methods, Inverse Probl., 26, 115014 (2010) · Zbl 1228.65086
[99] Grasmair, M., Linear convergence rates for Tikhonov regularization with positively homogeneous functionals, Inverse Probl., 27, 075014 (2011) · Zbl 1219.35359
[100] A. Haddad, Y. Meyer, Variational Methods in Image Processing. CAM-Report 04-52, UCLA, 2004 · Zbl 1200.94014
[101] Haddad, A., Texture separation in BV − G and BV − L^1 models, SIAM Multiscale Model. Simul., 6, 273-286 (2007) · Zbl 1146.49030
[102] He, L.; Marquina, A.; Osher, S., Blind deconvolution using TV regularization and Bregman iteration, Int. J. Imag. Syst. Tech., 15, 74-83 (2005)
[103] L. He, T.C. Chung, S. Osher, T. Fang, P. Speier, MR Image Reconstruction by Using the Iterative Refinement Method and Nonlinear Inverse Scale Space Methods. CAM Report 06-35, UCLA, 2005
[104] He, L.; Burger, M.; Osher, S., Iterative total variation regularization with non-quadratic fidelity, J. Math. Imag. Vis., 26, 167-184 (2006) · Zbl 1478.94048
[105] Hinterberger, W.; Scherzer, O., Variational methods on the space of functions of bounded Hessian for convexification and denoising, Computing, 76, 109-133 (2006) · Zbl 1098.49022
[106] Hintermüller, M.; Monserrat Rincon-Camacho, M., Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration, Inverse Probl., 26, 085005 (2010) · Zbl 1194.94031
[107] Hofmann, B.; Kaltenbacher, B.; Pöschl, C.; Scherzer, O., A Convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Probl., 23, 987-1010 (2007) · Zbl 1131.65046
[108] Huang, Y. M.; Ng, M. K.; Wen, Y. W., A new total variation method for multiplicative noise Removal, SIAM J. Imag. Sci., 2, 20-40 (2009) · Zbl 1187.68655
[109] Huber, P. J., Robust estimation of a location parameter, Ann. Math. Stat., 35, 73-101 (1964) · Zbl 0136.39805
[110] Idier, J., Bayesian Approach to Inverse Problems (2008), New York: Wiley, New York · Zbl 1156.60007
[111] Iordache, M. D.; Bioucas-Dias, J. M.; Plaza, A., Total variation regulatization in sparse hyperspectral unmixing, in 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 1-4 (2011), New York: IEEE, New York
[112] Jin, Z.; Yang, X., A variational model to remove the multiplicative noise in ultrasound images, J. Math. Imag. Vis., 74, 39-62 (2011) · Zbl 1255.68240
[113] E. Jonsson, S.C. Huang, T. Chan, Total Variation Regularization in Positron Emission Tomography. CAM Report 98-48, UCLA, 1998
[114] Kaipio, J. P.; Somersalo, E., Statistical and Computational Inverse Problems (2004), New York: Springer, New York
[115] Keeling, S.; Clason, C.; Hintermüller, M.; Knoll, F.; Laurain, A.; Winckel, G., An image space approach to Cartesian based parallel MR imaging with total variation regularization, Med. Image Anal., 16, 189-200 (2012)
[116] Kindermann, S.; Osher, S.; Jones, P. W., Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4, 1091-1115 (2005) · Zbl 1161.68827
[117] Kindermann, S.; Osher, S.; Xu, J., Denoising by BV-duality. J. Sci. Comp., 28, 411-444 (2006) · Zbl 1106.94007
[118] Knoll, F.; Unger, M.; Clason, C.; Diwoky, C.; Pock, T.; Stollberger, R., Fast reduction of undersampling artifacts in radial MR angiography with 3D total variation on graphics hardware, Magn. Reson. Mater. Phy., 23, 103-114 (2010)
[119] Knoll, F.; Bredies, K.; Pock, T.; Stollberger, R., Second order total generalized variation (TGV) for MRI, Magn. Reson. Med., 65, 480-491 (2011)
[120] Knoll, F.; Clason, C.; Bredies, K.; Uecker, M.; Stollberger, R., Parallel imaging with nonlinear reconstruction using variational penalties, Magn. Reson. Med., 67, 34-41 (2012)
[121] Lassas, M.; Siltanen, S., Can one use total variation prior for edge preserving Bayesian inversion, Inverse Probl., 20, 1537-1564 (2004) · Zbl 1062.62260
[122] Lax, P., Functional Analysis (2002), New York: Wiley, New York · Zbl 1009.47001
[123] Le, T.; Chartrand, R.; Asaki, T. J., A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imag. Vis., 27, 257-263 (2007)
[124] J. Lellman, J. Kappes, J. Yuan, F. Becker, C. Schnörr, Convex multi-class image labeling by simplex-constrained total variation Technical report (University of Heidelberg, 2008)
[125] Lemarechal, C.; Sagastizabal, C., Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries, SIAM J. Optim., 7, 367-385 (1997) · Zbl 0876.49019
[126] Lie, J.; Nordbotten, J. M., Inverse scale spaces for nonlinear regularization, J. Math. Imag. Vis., 27, 41-50 (2007) · Zbl 1478.94059
[127] Lorenz, D. A., Convergence rates and source conditions for Tikhonov regularization with sparsity constraints, J. Inverse Ill-Posed Probl., 16, 463-478 (2008) · Zbl 1161.65041
[128] Lou, Y.; Zhang, X.; Osher, S.; Bertozzi, A., Image recovery via nonlocal operators, J. Sci. Comput., 42, 185-197 (2010) · Zbl 1203.65088
[129] C. Louchet, Modeles variationnels et Bayesiens pour le d’ebruitage d’images: de la variation totale vers les moyennes non-locales. PhD thesis, University Paris-Descartes, 2008
[130] Louchet, C.; Moisan, L., Total Variation as a local filter, SIAM J. Imag. Sci., 4, 651-694 (2011) · Zbl 1219.94008
[131] Luce, R.; Perez, S., Parameter identification for an elliptic partial differential equation with distributed noisy data, Inverse Probl., 15, 291-307 (1999) · Zbl 0918.35147
[132] Lustig, M.; Donoho, D. L.; Pauly, J. M., Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., 58, 1182-1195 (2007)
[133] W. Ma, S. Osher, A TV Bregman Iterative Model of Retinex Theory. CAM-Report 10-13, UCLA, 2010 · Zbl 1261.68153
[134] Meyer, Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations (2001), Providence: AMS, Providence · Zbl 0987.35003
[135] Mohler, G.; Bertozzi, A.; Goldstein, T.; Osher, S., Fast TV regularization for 2D maximum penalized likelihood estimation, J. Comput. Graph. Stat., 20, 479-491 (2011)
[136] Möller, M., A Variational Approach for Sharpening High-Dimensional Images (2009), WWU Münster: Diploma thesis, WWU Münster
[137] Möller, M.; Wittman, T.; Bertozzi, A.; Burger, M., A variational approach for sharpening high-dimensional images, SIAM J. Imag. Sci., 5, 150-178 (2012) · Zbl 1258.94018
[138] Morel, J. M.; Solimini, S., Variational Methods for Image Segmentation (1995), Boston: Birkhäuser, Boston
[139] Müller, J., Parallel Total Variation Minimization (2008), WWU Münster: Diploma thesis, WWU Münster
[140] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42, 577-685 (1989) · Zbl 0691.49036
[141] Natterer, F.; Wübbeling, F., Mathematical Methods in Image Reconstruction (2001), Philadelphia: SIAM, Philadelphia · Zbl 0974.92016
[142] Ng, M. K.; Wang, W., A total variation model for retinex, SIAM J. Imag. Sci., 4, 345-365 (2011) · Zbl 1215.65117
[143] Obereder, A.; Osher, S.; Scherzer, O.; Klette, R., On the use of dual norms, bounded variation type regularization, in Properties from Incomplete Data, 373-390 (2005), Dordrecht: Kluwer, Dordrecht
[144] Obereder, A.; Scherzer, O.; Kovac, A., Bivariate density estimation using BV regularisation, Comput. Stat. Data Anal., 51, 5622-5634 (2007) · Zbl 1445.62073
[145] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2002), New York: Springer, New York
[146] Osher, S.; Scherzer, O., G-norm properties of bounded variation regularization, Comm. Math. Sci., 2, 237-254 (2004) · Zbl 1082.49003
[147] Osher, S.; Sole, A.; Vese, L., Image decomposition and restoration using total variation minimization and the H^−1 norm, SIAM Multiscale Model. Simul., 1, 349-370 (2003) · Zbl 1051.49026
[148] Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W., An iterative regularization method for total variation based image restoration, Multiscale Model. Simul., 4, 460-489 (2005) · Zbl 1090.94003
[149] Pan, Y.; Whitaker, R. T.; Cheryauka, A.; Ferguson, D., TV-regularized iterative image reconstruction on a mobile C-ARM CT, in Proceedings of SPIE Medical Imaging 2010 (2010), San Diego: SPIE, San Diego
[150] Panin, V. Y.; Zeng, G. L.; Gullberg, G. T., Total variation regulated EM Algorithm, IEEE Trans. Nucl. Sci., NS-46, 2202-2010 (1999)
[151] Pantin, E.; Starck, J. L.; Murtagh, F.; Egiazarian, K.; Campisi, P., Deconvolution and blind deconvolution, astronomy, in Blind Image Deconvolution: Theory and Applications, 277-317 (2007), Boca Raton: CRC Press, Boca Raton · Zbl 1160.68668
[152] Paulsen, K. D.; Jiang, H., Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization, Appl. Opt., 35, 3447-3458 (1996)
[153] Persson, M.; Bone, D.; Elmqvist, H., Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography, Phys. Med. Biol., 46, 853-866 (2001)
[154] G. Peyre, S. Bougleux, L. Cohen, Non-local regularization of inverse problems, in Proceedings of the 10th European Conference on Computer Vision. LNCS, vol. 5304 (Springer, Berlin, 2008), pp. 57-68 · Zbl 1223.68116
[155] T. Pock, A. Chambolle, H. Bischof, D. Cremers, A convex relaxation approach for computing minimal partitions, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009 · Zbl 1202.49031
[156] Pock, T.; Cremers, D.; Bischof, H.; Chambolle, A., Global solutions of variational models with convex regularization, SIAM J. Imag. Sci., 3, 1122-1145 (2010) · Zbl 1202.49031
[157] T. Pock, A. Chambolle, D. Cremers, H. Bischof, A convex relaxation approach for computing minimal partitions, in IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, 20-25 June 2009 (2009), pp. 810-817. doi:10.1109/CVPR.2009.5206604
[158] Z. Qin, D. Goldfarb, S. Ma, An Alternating Direction Method for Total Variation Denoising, Preprint (Columbia University, 2011) · Zbl 1326.94024
[159] Remmele, S.; Seeland, M.; Hesser, J., Fluorescence microscopy deconvolution based on Bregman iteration and Richardson-Lucy algorithm with TV regularization, in Proceedings of the Workshop: Bildverarbeitung fur die Medizin 2008, 72-76 (2008), Berlin: Springer, Berlin
[160] Resmerita, E., Regularization of ill-posed problems in Banach spaces: convergence rates, Inverse Probl., 21, 1303-1314 (2005) · Zbl 1082.65055
[161] Resmerita, E.; Scherzer, O., Error estimates for non-quadratic regularization and the relation to enhancing, Inverse Probl., 22, 801-814 (2006) · Zbl 1103.65062
[162] Ring, W., Structural properties of solutions to total variation regularization problems, Math. Model. Numer. Anal., 34, 799-810 (2000) · Zbl 1018.49021
[163] Rudin, L. I.; Osher, S. J.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268 (1992) · Zbl 0780.49028
[164] Rudin, L.; Lions, P. L.; Osher, S.; Osher, S.; Paragios, N., Multiplicative denoising and debluring: theory and algorithms, Geometric Level Sets in Imaging, Vision, and Graphics, 103-119 (2003), New York: Springer, New York · Zbl 1027.68137
[165] A. Sawatzky, C. Brune, F. Wübbeling, T. Kösters, K. Schäfers, M. Burger, Accurate EM-TV algorithm in PET with low SNR, 2008. IEEE Nuclear Science Symposium Conference Record. doi: 10.1109/NSSMIC.2008.4774392
[166] A. Sawatzky, (Nonlocal) Total Variation in Medical Imaging. PhD thesis, WWU Münster, 2011 · Zbl 1304.92032
[167] Sawatzky, A.; Brune, C.; Müller, J.; Burger, M., Total variation processing of images with Poisson statistics, in Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns, LNCS, 533-540 (2009), Berlin: Springer, Berlin
[168] A. Sawatzky, D. Tenbrinck, X. Jiang, M. Burger, A Variational Framework for Region-Based Segmentation Incorporating Physical Noise Models. CAM Report 11-81, UCLA, 2011 · Zbl 1291.68402
[169] Scherzer, O.; Groetsch, C.; Kerckhove, M., Inverse scale space theory for inverse problems, Scale-Space and Morphology in Computer Vision. Proceedings of the third International Conference Scale-space 2001, 317-325 (2001), Berlin: Springer, Berlin · Zbl 0991.68132
[170] Schoepfer, F.; Louis, A. K.; Schuster, T., Nonlinear iterative methods for linear ill-posed problems in Banach spaces, Inverse Probl., 22, 311-329 (2006) · Zbl 1088.65052
[171] Setzer, S.; Steidl, G.; Neamtu, M.; Schumaker, L. L., Variational methods with higher order derivatives, image processing, in Approximation XII, 360-386 (2008), Brentwood: Nashboro Press, Brentwood
[172] Setzer, S.; Steidl, G.; Teuber, T., Infimal convolution regularizations with discrete l1-type functionals, Comm. Math. Sci., 9, 797-872 (2011) · Zbl 1269.49063
[173] Snyder, D. L.; Hammoud, A. M.; White, R. L., Image recovery from data acquired with a charge- coupled-device camera, J. Opt. Soc. Am. A, 10, 1014-1023 (1993)
[174] Snyder, D. L.; Helstrom, C. W.; Lanterman, A. D.; Faisal, M.; White, R. L., Compensation for readout noise in CCD images, J. Opt. Soc. Am. A, 12, 272-283 (1995)
[175] Steidl, G., A note on the dual treatment of higher order regularization functionals, Computing, 76, 135-148 (2006) · Zbl 1087.65067
[176] Steidl, G.; Didas, S.; Neumann, J.; Kimmel, R.; Sochen, N.; Weickert, J., Relations between higher order TV regularization and support vector regression, Scale-Space and PDE Methods in Computer Vision, 515-527 (2005), Berlin: Springer, Berlin · Zbl 1119.68507
[177] Steidl, G.; Setzer, S.; Popilka, B.; Burgeth, B., Restoration of matrix fields by second order cone programming, Computing, 81, 161-178 (2007) · Zbl 1176.90463
[178] D. Strong, T. Chan, Exact Solutions to Total Variation Regularization Problems. CAM-Report 96-46, UCLA, 1996
[179] Strong, D. M.; Aujol, J. F.; Chan, T., Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization, SIAM J. Multiscale Model. Simul., 5, 273-303 (2006) · Zbl 1161.68830
[180] Stück, R.; Burger, M.; Hohage, T., The iteratively regularized GaussŰNewton method with convex constraints and applications in 4Pi microscopy, Inverse Probl., 28, 015012 (2012) · Zbl 1241.65054
[181] Tadmor, E.; Nezzar, S.; Vese, L., A multiscale image representation using hierarchical (BV;L2) decompositions, Multiscale Model. Simul., 2, 554-579 (2004) · Zbl 1146.68472
[182] Tadmor, E.; Nezzar, S.; Vese, L., Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation, Comm. Math. Sci., 6, 281-307 (2008) · Zbl 1189.68166
[183] Vardi, Y.; Shepp, L. A.; Kaufman, L., A statistical model for Positron emission tomography, JASA, 80, 8-37 (1985) · Zbl 0561.62094
[184] J. Velikina, S. Leng, G.H. Chen, Limited view angle tomographic image reconstruction via total variation minimization. Proc. SPIE v6510 i1
[185] Vese, L.; Lieu, L., Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces, Appl. Math. Optim., 58, 167-193 (2008) · Zbl 1191.68789
[186] Vese, L.; Osher, S., Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19, 533-572 (2003) · Zbl 1034.49039
[187] J. Velikina, S. Leng, G.-H. Chen, Limited view angle tomographic image reconstruction via total variation minimization, in Proceedings of the SPIE 6510, Medical Imaging 2007: Physics of Medical Imaging, 651020, 14 March, 2007. doi:10.1117/12.713750; doi:10.1117/12.713750
[188] K.R. Vixie, Some properties of minimizers for the Chan-Esedoglu L1TV functional. ArXiv 0710.3980 (2007)
[189] K.R. Vixie, S.P. Morgan, L1TV computes the flat norm for boundaries. Abstr. Appl. Anal. (2007), Article ID 45153 · Zbl 1145.49028
[190] Vogel, C. R.; Engl, H. W., Nonsmooth Regularization, Inverse Problems in Geophysical Applications, 1-11 (1997), Philadelphia: SIAM, Philadelphia · Zbl 0865.65038
[191] Vogel, C. R., Computational Methods for Inverse Problems (2002), Philadelphia: SIAM, Philadelphia · Zbl 1008.65103
[192] Vogel, C. R.; Oman, M. E., Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17, 227-238 (1996) · Zbl 0847.65083
[193] Wang, W. W.; Shui, P. L.; Feng, X. C., Variational models for fusion and denoising of multifocus images, IEEE Signal Process. Lett., 15, 65-68 (2008)
[194] Weickert, J., Anisotropic Diffusion in Image Processing (1998), Stuttgart: Teubner, Stuttgart · Zbl 0886.68131
[195] Weickert, J.; Schnörr, C., A theoretical framework for convex regularizers in PDE-based computation of image motion, Int. J. Comp. Vis., 45, 245-264 (2001) · Zbl 0987.68600
[196] M. Werlberger, T. Pock, M. Unger, H. Bischof, Optical flow guided TV-L1 video interpolation and restoration, in Energy Minimization Methods in Computer Vision and Pattern Recognition, ed. by Y. Boykov, F. Kahl, V. Lempitsky, F.R. Schmidt. Lecture Notes in Computer Science, vol. 6819 (2011), pp. 273-286
[197] Wernick, M. N.; Aarsvold, J. N., Emission Tomography: The Fundamentals of PET and SPECT (2004), San Diego: Academic, San Diego
[198] Wirtz, D., SEGMEDIX: Development and Application of a Medical Image Segmentation Framework (2009), WWU Münster: Diploma thesis, WWU Münster
[199] T. Wittman, Variational Approaches to Digital Image Zooming. PhD thesis, University of Minnesota, 2006
[200] Xu, J.; Osher, S., Iterative regularization and nonlinear inverse scale space applied to wavelet based denoising, IEEE Trans. Image Proc., 16, 534-544 (2007)
[201] Yang, Y. F.; Wu, T. T.; Pang, Z. F., Image-zooming technique based on Bregmanized nonlocal total variation regularization, Opt. Eng., 50, 097008-10 (2011)
[202] Zhang, Q.; Huang, X.; Zhang, L., An energy-driven total variation model for segmentation and object-based classification of high spatial resolution remote-sensing imagery, IEEE Geosci. Rem. Sens. Lett., 10, 125-129 (2013)
[203] X. Zhang, M. Burger, S. Osher, A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comp. 3 (2010). doi: 10.1007/s10915-010-9408-8 · Zbl 1227.65052
[204] Zhang, X.; Burger, M.; Bresson, X.; Osher, S., Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imag. Sci., 3, 253-276 (2010) · Zbl 1191.94030
[205] Zhu, M.; Wright, S. J.; Chan, T. F., Duality-based algorithms for total variation image restoration, Comp. Optim. Appl., 47, 377-400 (2010) · Zbl 1208.90165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.