×

A variational framework for region-based segmentation incorporating physical noise models. (English) Zbl 1291.68402

Summary: Image segmentation is one of the fundamental problems in computer vision and image processing. In the recent years mathematical models based on partial differential equations and variational methods have led to superior results in many applications, e.g., medical imaging. A majority of works on image segmentation implicitly assume the given image to be biased by additive Gaussian noise, for instance the popular Mumford-Shah model. Since this assumption is not suitable for a variety of problems, we propose a region-based variational segmentation framework to segment also images with non-Gaussian noise models. Motivated by applications in biomedical imaging, we discuss the cases of Poisson and multiplicative speckle noise intensively. Analytical results such as the existence of a solution are verified and we investigate the use of different regularization functionals to provide a-priori information regarding the expected solution. The performance of the proposed framework is illustrated by experimental results on synthetic and real data.

MSC:

68T45 Machine vision and scene understanding
68U10 Computing methodologies for image processing
92C55 Biomedical imaging and signal processing
Full Text: DOI

References:

[1] Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10, 1217-1229 (1994) · Zbl 0809.35151 · doi:10.1088/0266-5611/10/6/003
[2] Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975) · Zbl 0314.46030
[3] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140. Elsevier, Amsterdam (2003) · Zbl 1098.46001
[4] Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43, 999-1036 (1990) · Zbl 0722.49020 · doi:10.1002/cpa.3160430805
[5] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000) · Zbl 0957.49001
[6] Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68, 925-946 (2008) · Zbl 1151.68713 · doi:10.1137/060671814
[7] Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Applied Mathematical Sciences, vol. 147. Springer, Berlin (2006) · Zbl 1110.35001
[8] Aujol, J.-F.: Some first-order algorithms for total variation based image restoration. J. Math. Imaging Vis. 34, 307-327 (2009) · Zbl 1287.94012 · doi:10.1007/s10851-009-0149-y
[9] Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. Sijthoff & Noordhoff, Rockville (1978) · Zbl 0379.49010
[10] Benning, M.; Kösters, T.; Wübbeling, F.; Schäfers, K.; Burger, M., A nonlinear variational method for improved quantification of myocardial blood flow using dynamic \(\text{H}_2^{15}O\) PET, 4472-4477 (2008)
[11] Bertero, M.; Lanteri, H.; Zanni, L.; Censor, Y. (ed.); Jiang, M. (ed.); Louis, A. (ed.), Iterative image reconstruction: a point of view, No. 7, 37-63 (2008)
[12] Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28, 151-167 (2007) · Zbl 1523.94005 · doi:10.1007/s10851-007-0002-0
[13] Brox, T., Weickert, J.: Level set segmentation with multiple regions. IEEE Trans. Image Process. 15, 3213-3218 (2006) · doi:10.1109/TIP.2006.877481
[14] Burger, M., Franek, M., Schönlieb, C.-B.: Regularized regression and density estimation based on optimal transport. Appl. Math. Res. Express 2012 (2012), 45 pp. · Zbl 1318.62122
[15] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61-79 (1997) · Zbl 0894.68131 · doi:10.1023/A:1007979827043
[16] Caselles, V., Chambolle, A., Novaga, M.: The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Model. Simul. 6, 879-894 (2007) · Zbl 1145.49024 · doi:10.1137/070683003
[17] Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89-97 (2004) · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011320.81911.38
[18] Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120-145 (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[19] Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet and Stochastic Methods. SIAM, Philadelphia (2005) · Zbl 1095.68127 · doi:10.1137/1.9780898717877
[20] Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266-277 (2001) · Zbl 1039.68779 · doi:10.1109/83.902291
[21] Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964-1977 (1999) · Zbl 0929.68118 · doi:10.1137/S1064827596299767
[22] Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632-1648 (2006) · Zbl 1117.94002 · doi:10.1137/040615286
[23] Chesnaud, C., Réfrégier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Pattern Anal. Mach. Intell. 21, 1145-1157 (1999) · doi:10.1109/34.809108
[24] Chung, G.; Vese, L. A., Energy minimization based segmentation and denoising using a multilayer level set approach, No. 3757, 439-455 (2005), Berlin · doi:10.1007/11585978_29
[25] Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72, 195-215 (2007) · doi:10.1007/s11263-006-8711-1
[26] Cremers, D.; Pock, T.; Kolev, K.; Chambolle, A., Convex relaxation techniques for segmentation, stereo, and multiview reconstruction (2011), New York
[27] Dey, N., Blanc-Féraud, L., Zimmer, C., Roux, P., Kam, Z., Olivio-Marin, J.-C., Zerubia, J.: 3D microscopy deconvolution using Richardson-Lucy algorithm with total variation regularization. Tech. Rep. 5272, Institut National de Recherche en Informatique et en Automatique (2004)
[28] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Studies in Mathematics and Its Applications, vol. 1. North-Holland, Amsterdam (1976) · Zbl 0322.90046
[29] Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645-1661 (1994) · Zbl 0815.65041 · doi:10.1137/0731085
[30] Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications, vol. 15. Elsevier, Amsterdam (1983) · Zbl 0525.65045
[31] Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. J. Appl. Stat. 20, 25-62 (1993) · doi:10.1080/02664769300000058
[32] Geman, S.; McClure, D. E., Bayesian image analysis: an application to single photon emission tomography, 12-18 (1985)
[33] Ghanem, A., et al.: Triggered replenishment imaging reduces variability of quantitative myocardial contrast echocardiography and allows assessment of myocardial blood flow reserve. Echocardiography 24, 149-158 (2007) · doi:10.1111/j.1540-8175.2007.00368.x
[34] Gianazza, U., Savaré, G., Toscani, G.: The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. Arch. Ration. Mech. Anal. 194, 133-220 (2009) · Zbl 1223.35264 · doi:10.1007/s00205-008-0186-5
[35] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984) · Zbl 0545.49018 · doi:10.1007/978-1-4684-9486-0
[36] Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Studies in Applied Mathematics, vol. 9. SIAM, Philadelphia (1989) · Zbl 0698.73001 · doi:10.1137/1.9781611970838
[37] Goldluecke, B.; Cremers, D., Convex relaxation for multilabel problems with product label spaces, No. 6315, 225-238 (2010), Berlin
[38] Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323-343 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[39] Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45, 272-293 (2010) · Zbl 1203.65044 · doi:10.1007/s10915-009-9331-z
[40] Helin, T., Lassas, M.: Hierarchical models in statistical inverse problems and the Mumford-Shah functional. Inverse Probl. 27, 015008 (2011). 32 pp. · Zbl 1215.65022 · doi:10.1088/0266-5611/27/1/015008
[41] Hell, S.W.: Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347-1355 (2003) · doi:10.1038/nbt895
[42] Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advances in Design and Control, vol. 15. SIAM, Philadelphia (2008) · Zbl 1156.49002 · doi:10.1137/1.9780898718614
[43] Jin, Z., Yang, X.: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39, 62-74 (2011) · Zbl 1255.68240 · doi:10.1007/s10851-010-0225-3
[44] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321-331 (1988) · doi:10.1007/BF00133570
[45] Krissian, K.; Kikinis, R.; Westin, C.-F.; Vosburgh, K., Speckle-constrained filtering of ultrasound images, No. 2, 547-552 (2005)
[46] Lantéri, H., Theys, C.: Restoration of astrophysical images—the case of Poisson data with additive Gaussian noise. EURASIP J. Appl. Signal Process. 15, 2500-2513 (2005) · Zbl 1102.94015
[47] Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27, 257-263 (2007) · doi:10.1007/s10851-007-0652-y
[48] Lellmann, J.; Becker, F.; Schnörr, C., Convex optimization for multi-class image labeling with a novel family of total variation based regularizers, 646-653 (2009)
[49] Lellmann, J.; Lenzen, F.; Schnörr, C., Optimality bounds for a variational relaxation of the image partitioning problem, No. 6819, 132-146 (2011), Berlin
[50] Li, C.; Xu, C.; Gui, C.; Fox, M. D., Level set evolution without re-initialization: a new variational formulation, No. 1, 430-436 (2005)
[51] Llacer, J.; Núñez, J.; White, R. L. (ed.); Allen, R. J. (ed.), Iterative maximum likelihood and Bayesian algorithms for image reconstruction in astronomy, 62-69 (1990), Baltimore
[52] Loupas, T., McDicken, W.N., Allan, P.L.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36, 129-135 (1989) · doi:10.1109/31.16577
[53] Martin, P., Réfrégier, P., Goudail, F., Guérault, F.: Influence of the noise model on level set active contour segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 26, 799-803 (2004) · doi:10.1109/TPAMI.2004.11
[54] Megginson, R.E.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183. Springer, Berlin (1998) · Zbl 0910.46008 · doi:10.1007/978-1-4612-0603-3
[55] Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577-685 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[56] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Academia/Masson et Cie, Prague/Paris (1967) · Zbl 1225.35003
[57] Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25, 987-1010 (2006) · doi:10.1109/TMI.2006.877092
[58] Obereder, A., Scherzer, O., Kovac, A.: Bivariate density estimation using BV regularisation. Comput. Stat. Data Anal. 51, 5622-5634 (2007) · Zbl 1445.62073 · doi:10.1016/j.csda.2007.04.019
[59] Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, Berlin (2003) · Zbl 1026.76001
[60] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[61] Paragois, N., Deriche, R.: Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13, 249-268 (2002) · doi:10.1006/jvci.2001.0475
[62] Pirich, C., Schwaiger, M.: The clinical role of positron emission tomography in management of the cardiac patient. Port. J. Cardiol. 19(Suppl 1), 89-100 (2000)
[63] Pock, T.; Chambolle, A.; Cremers, D.; Bischof, H., A convex relaxation approach for computing minimal partitions, 810-817 (2009)
[64] Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM J. Imaging Sci. 3, 1122-1145 (2010) · Zbl 1202.49031 · doi:10.1137/090757617
[65] Resmerita, E., Anderssen, R.S.: Joint additive Kullback-Leibler residual minimization and regularization for linear inverse problems. Math. Methods Appl. Sci. 30, 1527-1544 (2007) · Zbl 1132.47008 · doi:10.1002/mma.855
[66] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[67] Rudin, L.; Lions, P.-L.; Osher, S., Multiplicative denoising and deblurring: theory and algorithms, 103-119 (2003), Berlin · doi:10.1007/0-387-21810-6_6
[68] Sarti, A., Corsi, C., Mazzini, E., Lamberti, C.: Maximum likelihood segmentation of ultrasound images with Rayleigh distribution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 947-960 (2005) · doi:10.1109/TUFFC.2005.1504017
[69] Sawatzky, A.: (Nonlocal) Total Variation in Medical Imaging. PhD thesis, University of Münster (2011). CAM Report 11-47, UCLA · Zbl 1304.92032
[70] Sawatzky, A.; Brune, C.; Müller, J.; Burger, M.; Jiang, X. (ed.); Petkov, N. (ed.), Total variation processing of images with Poisson statistics, No. 5702, 533-540 (2009) · doi:10.1007/978-3-642-03767-2_65
[71] Schäfers, K.P., et al.: Absolute quantification of myocardial blood flow with \(\text{H}_2^{15}O\) and 3-dimensional PET: an experimental validation. J. Nucl. Med. 43, 1031-1040 (2002)
[72] Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113-122 (1982) · doi:10.1109/TMI.1982.4307558
[73] Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439-456 (2003) · Zbl 1035.65098 · doi:10.1023/A:1025324613450
[74] Snyder, D.L., Hammoud, A.M., White, R.L.: Image recovery from data acquired with a charge-coupled-device camera. J. Opt. Soc. Am. A, Opt. Image Sci. Vis. 10, 1014-1023 (1993) · doi:10.1364/JOSAA.10.001014
[75] Soret, M., Bacharach, S.L., Buvat, I.: Partial-volume effect in PET tumor imaging. J. Nucl. Med. 48, 932-945 (2007) · doi:10.2967/jnumed.106.035774
[76] Stypmann, J., et al.: Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc. Natl. Acad. Sci. USA 99, 6234-6239 (2002) · doi:10.1073/pnas.092637699
[77] Tur, M., Chin, K.C., Goodman, J.W.: When is speckle noise multiplicative? Appl. Opt. 21, 1157-1159 (1982) · doi:10.1364/AO.21.001157
[78] Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography. J. Am. Stat. Assoc. 80, 8-20 (1985) · Zbl 0561.62094 · doi:10.1080/01621459.1985.10477119
[79] Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50, 271-293 (2002) · Zbl 1012.68782 · doi:10.1023/A:1020874308076
[80] Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, New York (2003) · Zbl 1106.90001
[81] Vovk, U., Pernuš, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26, 405-421 (2007) · doi:10.1109/TMI.2006.891486
[82] Wellnhofer, E., et al.: Angiographic assessment of cardiac allograft vasculopathy: results of a consensus conference of the task force for thoracic organ transplantation of the German cardiac society. Transpl. Int. 23, 1094-1104 (2010) · doi:10.1111/j.1432-2277.2010.01096.x
[83] Wernick, M.N., Aarsvold, J.N. (eds.): Emission Tomography: The Fundamentals of PET and SPECT. Elsevier, Amsterdam (2004)
[84] Wirtz, D.: SEGMEDIX: Development and application of a medical image segmentation framework. Master’s thesis, University of Münster (2009) www.agh.ians.uni-stuttgart.de/uploads/media/DA_Wirtz.pdf
[85] Xiao, G., Brady, M., Noble, J.A., Zhang, Y.: Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Trans. Med. Imaging 21, 48-57 (2002) · doi:10.1109/42.981233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.