×

Debye sources, Beltrami fields, and a complex structure on Maxwell fields. (English) Zbl 1342.35368

Authors’ abstract: The Debye source representation for solutions to the time-harmonic Maxwell equations is extended to bounded domains with finitely many smooth boundary components. A strong uniqueness result is proved for this representation. Natural complex structures are identified on the vector spaces of time-harmonic Maxwell fields. It is shown that these complex structures are uniformized by the Debye source representation, that is, represented by a fixed linear map on a fixed vector space, independent of the frequency. This complex structure relates time-harmonic Maxwell fields to constant-\(k\) Beltrami fields, i.e., solutions of the equation \[ \nabla\times\mathbf E=k\mathbf E \] A family of self-adjoint boundary conditions are defined for the Beltrami operator. This leads to a proof of the existence of zero-flux, constant-\(k\), force-free Beltrami fields for any bounded region in \(\mathbb R^3\), as well as a constructive method to find them. The family of self-adjoint boundary value problems defines a new spectral invariant for bounded domains in \(\mathbb R^3\).

MSC:

35Q61 Maxwell equations

References:

[1] Alpert, B. K.Hybrid Gauss‐trapezoidal quadrature rules. SIAM J. Sci. Comput.20 (1999), no. 5, 1551-1584 (electronic). doi: 10.1137/S1064827597325141 · Zbl 0933.41019
[2] Bauer, F.; Betancourt, O.; Garabedian, P.Magnetohydrodynamic equilibrium and stability of stellarators. Springer, New York, 1984. · Zbl 0545.76135
[3] Beyn, W.‐J.An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl.436 (2012), no. 10, 3839-3863. doi: 10.1016/j.laa.2011.03.030 · Zbl 1237.65035
[4] Cantarella, J.Topological structure of stable plasma flows. Thesis, University of Pennsylvania, 1999.
[5] Cantarella, J.; DeTurck, D.; Gluck, H.; Teytel, M.The spectrum of the curl operator on spherically symmetric domains. Phys. Plasmas7 (2000), no. 7, 2766-2775. doi: 10.1063/1.874127
[6] Colton, D., and Kress, R.Integral equation methods in scattering theory. Krieger Publishing, Malabar, Fla., 1992.
[7] Epstein, C. L.; Greengard, L.Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math.63 (2010), no. 4, 413-463. doi: 10.1002/cpa.20313 · Zbl 1190.35215
[8] Epstein, C. L.; Greengard, L.; O’Neil, M.Debye sources and the numerical solution of the time harmonic Maxwell equations II. Comm. Pure Appl. Math.66 (2013), no. 5, 753-789. doi: 10.1002/cpa.21420 · Zbl 1291.35383
[9] Griffiths, P.; Harris, J.Principles of algebraic geometry. Pure and Applied Mathematics. Wiley, New York, 1978. · Zbl 0408.14001
[10] Hiptmair, R.; Kotiuga, P. R.; Tordeux, S.Self‐adjoint curl operators. Ann. Mat. Pura Appl. (4)191 (2012), no. 3, 431-457. doi: 10.1007/s10231-011-0189-y · Zbl 1275.47100
[11] Hudson, S. R.; Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.Non‐axisymmetric, multi‐region relaxed magnetohydrodynamic equilibrium solutions. Plasma Phys. Control. Fusion54 (2012), 014005. doi: 10.1088/0741-3335/54/1/014005
[12] Hudson, S. R.; Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; vonNessi, G.; Lazer‐son, S.Computation of multi‐region relaxed magnetohydrodynamic equilibria. Phys. Plasmas19 (2012), 112502. doi: 10.1063/1.4765691
[13] Jackson, J. D.Classical electrodynamics. Third edition. Wiley, Hoboken, N.J., 1998. · Zbl 0913.00013
[14] Kress, R.A boundary integral equation method for a Neumann boundary problem for force‐free fields. J. Engrg. Math.15 (1981), no. 1, 29-48. doi: 10.1007/BF00039842 · Zbl 0477.73077
[15] Kress, R.On constant‐alpha force‐free fields in a torus. J. Engrg. Math.20 (1986), no. 4, 323-344. doi: 10.1007/BF00044609 · Zbl 0637.76121
[16] Marsh, G. E.Force‐free magnetic fields: solutions, topology and applications. World Scientific, Singapore, 1996.
[17] Mü;ller, C.Foundations of the mathematical theory of electromagnetic waves. Die Grundlehren der mathematischen Wissenschaften, 155. Springer, New York‐Heidelberg1969. · Zbl 0181.57203
[18] Nédélec, J.‐C.Acoustic and electromagnetic equations. Integral representations for harmonic problems. Applied Mathematical Sciences, 144. Springer, New York, 2001. doi: 10.1007/978-1-4757-4393-7 · Zbl 0981.35002
[19] Papas, C. H.Theory of electromagnetic wave propagation. Dover, New York, 1988.
[20] Picard, R.On a selfadjoint realization of curl and some of its applications. Ricerche Mat.47 (1998), no. 1, 153-180. · Zbl 0926.35104
[21] Picard, R.On a selfadjoint realization of curl in exterior domains. Math. Z.229 (1998), no. 2, 319-338. doi: 10.1007/PL00004656 · Zbl 0935.35029
[22] Rodríguez, R.; Venegas, P.Numerical approximation of the spectrum of the curl operator. Math. Comp.83 (2014), no. 286, 553-577. doi: 10.1090/S0025-5718-2013-02745-7 · Zbl 1288.65162
[23] Taylor, M. E.Partial differential equations I: basic theory. Applied Mathematical Sciences, 115. Springer, New York, 1996. · Zbl 0869.35002
[24] Young, P.; Hao, S.; Martinsson, P. G.A high‐order Nyström discretization scheme for boundary integral equations defined on rotationally symmetric surfaces. J. Comput. Phys.231 (2012), no. 11, 4142-4159. doi: 10.1016/j.jcp.2012.02.008 · Zbl 1250.65146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.