×

Numerical approximation of the spectrum of the curl operator. (English) Zbl 1288.65162

For bounded, simply-connected domains, an eigenvalue problem for the curl operator with divergence-free eigensolutions is investigated. Two different weak formulations are presented and discretized by finite elements.
The first one directly delivers the eigenvalues and eigensolutions of the original problem, but its discretization leads to a degenerate generalized eigenvalue problem with both matrices being non-definite, so that an application of standard solvers is not possible.
The second formulation leads to an eigenvalue problem, whose eigenvalues are the square of the eigenvalues of the curl operator and the corresponding eigenspaces are invariant subspaces of the original problem. The finite element discretization results in a generalized eigenvalue problem with Hermitian matrices, the one on the right hand side being positive definite. For this approach, spectral convergence, optimal-order error estimates and absence of spurious modes are established.
In the case of eigenspaces of dimension larger than 1, the eigensolutions of the curl operator cannot be reconstructed from the eigensolutions of the second formulation. In this case, one can resort to the first variational method.
Finally, some numerical experiments confirm the theoretical results.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
35P15 Estimates of eigenvalues in context of PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
Full Text: DOI

References:

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823 – 864 (English, with English and French summaries). , https://doi.org/10.1002/(SICI)1099-1476(199806)21:93.0.CO;2-B · Zbl 0914.35094
[2] E. Beltrami, Considerazioni idrodinamiche, Rend. Inst. Lombardo Acad. Sci. Let., 22 (1889) 122-131. (English translation: Considerations on hydrodynamics, Int. J. Fusion Energy, 3 (1985) 53-57.)
[3] Alfredo Bermúdez, Rodolfo Rodríguez, and Pilar Salgado, Numerical analysis of electric field formulations of the eddy current model, Numer. Math. 102 (2005), no. 2, 181 – 201. · Zbl 1084.78004 · doi:10.1007/s00211-005-0652-z
[4] Daniele Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1 – 120. · Zbl 1242.65110 · doi:10.1017/S0962492910000012
[5] T. Z. Boulmezaoud and T. Amari, Approximation of linear force-free fields in bounded 3-D domains, Math. Comput. Modelling 31 (2000), no. 2-3, 109 – 129. · Zbl 1042.78501 · doi:10.1016/S0895-7177(99)00227-7
[6] T. Z. Boulmezaoud and T. Amari, A finite-element method for computing nonlinear force-free fields, Math. Comput. Modelling 34 (2001), no. 7-8, 903 – 920. · Zbl 1031.85003 · doi:10.1016/S0895-7177(01)00108-X
[7] Tahar-Zamène Boulmezaoud, Yvon Maday, and Tahar Amari, On the linear force-free fields in bounded and unbounded three-dimensional domains, M2AN Math. Model. Numer. Anal. 33 (1999), no. 2, 359 – 393 (English, with English and French summaries). · Zbl 0954.35043 · doi:10.1051/m2an:1999121
[9] Jason Cantarella, Dennis DeTurck, Herman Gluck, and Mikhail Teytel, The spectrum of the curl operator on spherically symmetric domains, Phys. Plasmas 7 (2000), no. 7, 2766 – 2775. · Zbl 1054.78500 · doi:10.1063/1.874127
[10] S. Chandrasekhar and L. Woltjer, On force-free magnetic fields, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 285 – 289. · Zbl 0080.41201
[11] S. Chandrasekhar and P. C. Kendall, On force-free magnetic fields, Astrophys. J. 126 (1957), 457 – 460. · doi:10.1086/146413
[12] Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978), no. 2, 97 – 112, iii (English, with French summary). Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. II. Error estimates for the Galerkin method, RAIRO Anal. Numér. 12 (1978), no. 2, 113 – 119, iii (English, with French summary). · Zbl 0393.65024
[13] Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978), no. 2, 97 – 112, iii (English, with French summary). Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. II. Error estimates for the Galerkin method, RAIRO Anal. Numér. 12 (1978), no. 2, 113 – 119, iii (English, with French summary). · Zbl 0393.65024
[14] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. · Zbl 0585.65077
[15] A. Lakhtakia, Victor Trkal, Beltrami fields and Trkalian flows, Czech J. Phys., 44 (1994) 89-96.
[16] Salim Meddahi and Virginia Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem, M2AN Math. Model. Numer. Anal. 37 (2003), no. 2, 291 – 318. · Zbl 1031.78012 · doi:10.1051/m2an:2003027
[17] B. Mercier, J. Osborn, J. Rappaz, and P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods, Math. Comp. 36 (1981), no. 154, 427 – 453. · Zbl 0472.65080
[18] Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. · Zbl 1024.78009
[19] Edward C. Morse, Eigenfunctions of the curl in cylindrical geometry, J. Math. Phys. 46 (2005), no. 11, 113511, 13. · Zbl 1111.78011 · doi:10.1063/1.2118447
[20] J.-C. Nédélec, Mixed finite elements in \?³, Numer. Math. 35 (1980), no. 3, 315 – 341. · Zbl 0419.65069 · doi:10.1007/BF01396415
[21] J. B. Taylor, Relaxation of toroidal and generation of reverse magnetic fields, 33 (1974) 1139-1141.
[22] V. Trkal, Poznámka k hydrodynamice vazkých tekutin, Časopis pro Pĕstování Mathematiky a Fysiky, 48 (1919) 302-311. (English translation: A note on the hydrodynamics of viscous fluids, Czech J. Phys., 44 (1994) 97-106.)
[23] L. Woltjer, A theorem on force-free magnetic fields, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 489 – 491. · Zbl 0081.21703
[24] L. Woltjer, The crab nebula, Bull. Astron. Inst. Neth., 14 (1958) 39-80.
[25] Zensho Yoshida and Yoshikazu Giga, Remarks on spectra of operator rot, Math. Z. 204 (1990), no. 2, 235 – 245. · Zbl 0676.47012 · doi:10.1007/BF02570870
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.