×

From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules. (English) Zbl 1335.11063

The paper under review is a survey about van der Corput sequences and their generalizations in commemoration of 125th birthday of J.G. van der Corput. The authors give results on uniform distribution modulo 1 of the van der Corput sequence, generalizations and variants of the van der Corput sequence, and moreover multi-dimensional generalizations of the van der Corput sequence. The paper contains a comprehensive references list of earlier studies derived from van der Corput’s idea.

MSC:

11K38 Irregularities of distribution, discrepancy
11K45 Pseudo-random numbers; Monte Carlo methods
11-02 Research exposition (monographs, survey articles) pertaining to number theory

Software:

MinT

References:

[1] Aistleitner, C.; Hofer, M., On consecutive elements of the van der Corput sequence, Unif. Distrib. Theory, 8, 1, 89-96 (2013) · Zbl 1340.11060
[2] Atanassov, E. I., On the discrepancy of the Halton sequence, Math. Balkanica (N.S.), 18, 15-32 (2004) · Zbl 1088.11058
[3] Barat, G.; Grabner, P. J., Distribution properties of \(G\)-additive functions, J. Number Theory, 60, 103-123 (1996) · Zbl 0862.11048
[4] Beck, J.; Chen, W. W.L., Irregularities of Distribution (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0601.10039
[5] Béjian, R., Sur certaines suites présentant une faible discrépance à l’origine, C. R. Acad. Sci.,Paris, Sér. A, 286, 135-138 (1978) · Zbl 0378.10031
[6] Béjian, R., Minoration de la discrépance d’une suite quelconque sur \(T\), Acta Arith., 41, 185-202 (1982) · Zbl 0439.10038
[7] Béjian, R.; Faure, H., Discrépance de la suite de van der Corput, C. R. Acad. Sci., Paris, Sér. A, 285, 313-316 (1977) · Zbl 0361.10032
[8] Béjian, R.; Faure, H., Discrépance de la suite de van der Corput, Séminaire Delange-Pisot-Poitou (Théorie des nombres), 13, 1-14 (1977/78) · Zbl 0361.10032
[9] Bertrand, A., Développements en base de Pisot et répartition modulo 1, C.R. Acad. Sci. Paris, Sér A, 285, 419-421 (1977) · Zbl 0362.10040
[10] Bibiloni, L.; Paradís, J.; Viader, P., Fibonacci, van der Corput and Riesz-Nágy, J. Math. Anal. Appl., 362, 401-414 (2010) · Zbl 1227.11032
[11] Bilyk, D., Cyclic shifts of the van der Corput set, Proc. Amer. Math. Soc., 137, 2591-2600 (2009) · Zbl 1247.11099
[12] Bilyk, D.; Lacey, M. T., The supremum norm of the discrepancy function: recent results and connections, (Dick, J.; Kuo, F. Y.; Peters, G. W.; Sloan, I. H., Monte Carlo and Quasi-Monte Carlo Methods 2012 (2013), Springer: Springer Heidelberg), 23-38 · Zbl 1304.11074
[13] Bilyk, D.; Lacey, M. T.; Vagharshakyan, A., On the small ball inequality in all dimensions, J. Funct. Anal., 254, 2470-2502 (2008) · Zbl 1214.42024
[14] Blažeková, O., Pseudo-randomness of van der Corput’s sequences, Math. Slovaca, 59, 315-322 (2009) · Zbl 1209.11075
[15] Borel, J. P., Self-similar measures and sequences, J. Number Theory, 31, 208-241 (1989) · Zbl 0673.10039
[16] Chaix, H.; Faure, H., Discrépance et diaphonie en dimension un, Acta Arith., 63, 103-141 (1993) · Zbl 0772.11022
[17] Davenport, H., Note on irregularities of distribution, Mathematika, 3, 131-135 (1956) · Zbl 0073.03402
[18] De Clerck, L., A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley, Monatsh. Math., 101, 261-278 (1986) · Zbl 0588.10059
[19] Dick, J., Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions, SIAM J. Numer. Anal., 45, 2141-2176 (2007) · Zbl 1158.65007
[20] Dick, J., Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order, SIAM J. Numer. Anal., 46, 1519-1553 (2008) · Zbl 1189.42012
[22] Dick, J.; Kuo, F. Y.; Sloan, I. H., High dimensional numerical integration-the quasi-Monte Carlo way, Acta Numer., 22, 133-288 (2013) · Zbl 1296.65004
[23] Dick, J.; Pillichshammer, F., Periodic functions with bounded remainder, Arch. Math., 87, 554-563 (2006) · Zbl 1115.11044
[24] Dick, J.; Pillichshammer, F., Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1282.65012
[25] Dick, J.; Pillichshammer, F., Explicit constructions of point sets and sequences with low discrepancy, (Kritzer, P.; Niederreiter, H.; Pillichshammer, F.; Winterhof, A., Uniform Distribution and Quasi-Monte Carlo Methods. Uniform Distribution and Quasi-Monte Carlo Methods, Radon Series on Computational and Applied Mathematics, vol. 15 (2014), DeGruyter: DeGruyter Berlin), 63-86 · Zbl 1335.11061
[26] Dick, J.; Pillichshammer, F., Optimal \(L_2\) discrepancy bounds for higher order digital sequences over the finite field \(F_2\), Acta Arith., 162, 65-99 (2014) · Zbl 1294.11127
[27] Drmota, M.; Larcher, G.; Pillichshammer, F., Precise distribution properties of the van der Corput sequence and related sequences, Manuscripta Math., 118, 11-41 (2005) · Zbl 1088.11060
[28] Drmota, M.; Tichy, R. F., Sequences, discrepancies and applications, (Lecture Notes in Mathematics, vol. 1651 (1997), Springer Verlag: Springer Verlag Berlin) · Zbl 0877.11043
[29] Dupain, Y.; Sós, V., On the discrepancy of \((n \alpha)\) sequences, Topics in classical number theory, Colloq. Budapest 1981, Vol. I, Colloq. Math. Soc. Janos Bolyai, 34, 355-387 (1984) · Zbl 0546.10046
[30] Faure, H., Discrépance de suites associées à un système de numération, C. R. Acad. Sci., Paris, Sér. A, 286, 293-296 (1978), (French) · Zbl 0378.10032
[32] Faure, H., Discrépances de suites associées a un système de numération (en dimension un), Bull. Soc. Math. France, 109, 143-182 (1981), (French) · Zbl 0488.10052
[33] Faure, H., Discrépances de suites associées a un système de numération (en dimension \(s)\), Acta Arith., 41, 337-351 (1982), (French) · Zbl 0442.10035
[34] Faure, H., Étude des restes pour les suites de Van Der Corput généralisées, J. Number Theory, 16, 376-394 (1983), (French) · Zbl 0513.10047
[35] Faure, H., Lemme de Bohl pour les suites de Van Der Corput generalisées, J. Number Theory, 22, 4-20 (1986), (French) · Zbl 0576.10033
[36] Faure, H., On the star-discrepancy of generalized Hammersley sequences in two dimensions, Monatsh. Math., 101, 291-300 (1986) · Zbl 0588.10060
[37] Faure, H., Discrépance quadratique de la suite de van der Corput et de sa symétrique, Acta Arith., 60, 333-350 (1990), (French) · Zbl 0705.11039
[38] Faure, H., Good permutations for extreme discrepancy, J. Number Theory, 42, 47-56 (1992) · Zbl 0768.11026
[39] Faure, H., Discrepancy and diaphony of digital \((0, 1)\)-sequences in prime bases, Acta Arith., 117, 125-148 (2005) · Zbl 1080.11054
[40] Faure, H., Irregularities of distribution of digital \((0, 1)\)-sequences in prime bases, Integers, 5, 3 (2005), A07, 12pp. · Zbl 1084.11041
[41] Faure, H., Selection criteria for (random) generation of digital \((0, s) -\) sequences, (Niederreiter, H.; Talay, D., Monte Carlo and Quasi-Monte Carlo Methods 2004 (2006), Springer: Springer Berlin), 113-126 · Zbl 1096.11028
[42] Faure, H., Van der Corput sequences towards \((0, 1)\)-sequences in base \(b\), J. Théor. Nombres Bordeaux, 19, 125-140 (2007) · Zbl 1119.11044
[43] Faure, H., Improvements on low discrepancy one-dimensional sequences and two-dimensional point sets, (Keller, A.; Heinrich, S.; Niederreiter, H., Monte-Carlo and Quasi-Monte Carlo Methods 2006 (2008), Springer), 327-341 · Zbl 1213.11153
[44] Faure, H., Star extreme discrepancy of generalized two-dimensional Hammersley point sets, Unif. Distrib. Theory, 3, 2, 45-65 (2008) · Zbl 1212.11075
[45] Faure, H., On Atanassov’s methods for discrepancy bounds of low-discrepancy sequences, (Kritzer, P.; Niederreiter, H.; Pillichshammer, F.; Winterhof, A., Uniform Distribution and Quasi-Monte Carlo Methods. Uniform Distribution and Quasi-Monte Carlo Methods, Radon Series on Computational and Applied Mathematics, vol. 15 (2014), DeGruyter: DeGruyter Berlin), 105-126 · Zbl 1368.11078
[46] Faure, H.; Chaix, H., Minoration de discrépance en dimension deux, Acta Arith., 76, 149-164 (1996), (French) · Zbl 0841.11039
[47] Faure, H.; Kritzer, P., New star discrepancy bounds for \((t, m, s)\)-nets and \((t, s)\)-sequences, Monatsh. Math., 172, 55-75 (2013) · Zbl 1287.11092
[48] Faure, H.; Lemieux, C., Generalized Halton sequences in 2008: A comparative study, ACM Trans. Model. Comp. Sim., 19 (2009), (Article 15) · Zbl 1288.65003
[49] Faure, H.; Lemieux, C., Improvements on the star discrepancy of \((t, s)\)-sequences, Acta Arith., 61, 61-78 (2012) · Zbl 1270.11077
[50] Faure, H.; Lemieux, C., A variant of Atanassov’s method for \((t, s)\)-sequences and \((t, e, s)\)-sequences, J. Complexity, 30, 620-633 (2014) · Zbl 1298.11075
[51] Faure, H.; Lemieux, C., A review of discrepancy bounds for \((t, s)\)- and \((t, e, s)\)-sequences with numerical comparisons, Math. Comp. Sim. (2015)
[52] Faure, H.; Pillichshammer, F., \(L_p\) discrepancy of generalized two-dimensional Hammersley point sets, Monatsh. Math., 158, 31-61 (2009) · Zbl 1175.11042
[53] Faure, H.; Pillichshammer, F., \(L_2\) discrepancy of two-dimensional digitally shifted Hammersley point sets in base \(b\), (L’Ecuyer, P.; Owen, A., Monte Carlo and Quasi-Monte Carlo Methods 2008 (2009), Springer: Springer Berlin), 355-368 · Zbl 1228.11122
[54] Faure, H.; Pillichshammer, F., \(L_2\) discrepancy of generalized Zaremba point sets, J. Théor. Nombres Bordeaux, 23, 121-136 (2011) · Zbl 1277.11081
[55] Faure, H.; Pillichshammer, F., A generalization of NUT digital \((0, 1)\)-sequences and best possible lower bounds for star discrepancy, Acta Arith., 158, 321-340 (2013) · Zbl 1286.11121
[56] Faure, H.; Pillichshammer, F.; Pirsic, G., \(L_2\) discrepancy of linearly digit scrambled Zaremba point sets, Unif. Distrib. Theory, 6, 2, 59-81 (2011) · Zbl 1333.11070
[57] Faure, H.; Pillichshammer, F.; Pirsic, G.; Schmid, W. Ch., \(L_2\) discrepancy of generalized two-dimensional Hammersley poihnt sets scrambled with arbitrary permutations, Acta Arith., 141, 395-418 (2010) · Zbl 1198.11072
[58] Federer, H., Geometric Measure Theory (1969), Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc.: Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc. New York · Zbl 0176.00801
[59] Fialová, J.; Strauch, O., On two-dimensional sequences composed by one-dimensional uniformly distributed sequences, Unif. Distrib. Theory, 6, 1, 101-125 (2011) · Zbl 1313.11089
[60] Gaposhkin, V. F., Lacunary sequences and independent functions, Russian Math. Surveys, 21, 3-82 (1966) · Zbl 0178.06903
[61] Gillet, A., Sur la répartition modulo un. Thèse de Doctorat d’Etat (1968), Université d’Aix-Marseille
[62] Grabner, P.; Hellekalek, P.; Liardet, P., The dynamical point of view of low-discrepancy sequences, Unif. Distrib. Theory, 7, 1, 11-17 (2012) · Zbl 1313.11093
[63] Grozdanov, V. S., On the diaphony of one class of one-dimensional sequences, Int. J. Math and Math. Sci., 19.1, 115-124 (1996) · Zbl 0841.11038
[64] Haber, S., On a sequence of points of interest for numerical quadrature, J. Res. Nat. Bur. Stand. Sect. B, 70, 127-136 (1966) · Zbl 0158.16002
[65] Halász, G., On Roth’s method in the theory of irregularities of point distributions, (Recent progress in analytic number theory, vol. 2 (1981), Academic Press: Academic Press London-New York), 79-94, Durham, 1979 · Zbl 0459.10032
[66] Halton, J. H., On the efficiency of certain quasi-random sequences of points inevaluating multi-dimensional integrals, Numer. Math., 2, 84-90 (1960) · Zbl 0090.34505
[67] Halton, J. H.; Zaremba, S. K., The extreme and the \(L^2\) discrepancies of some plane sets, Monatsh. Math., 73, 316-328 (1969) · Zbl 0183.31401
[68] Hellekalek, P., On regularities of the distribution of special sequences, Monatsh. Math., 90, 291-295 (1980) · Zbl 0435.10032
[69] Hellekalek, P., Regularities in the distribution of special sequences, J. Number Theory, 18, 41-55 (1984) · Zbl 0531.10055
[70] Hellekalek, P.; Larcher, G., On functions with bounded remainder, Ann. Inst. Fourier (Grenoble), 39, 17-26 (1989) · Zbl 0674.28007
[71] Hellekalek, P.; Liardet, P., The dynamics associated with certain digital sequences, (Probability and number theory-Kanazawa 2005. Probability and number theory-Kanazawa 2005, Adv. Stud. Pure Math., vol. 49 (2007), Math. Soc. Japan: Math. Soc. Japan Tokyo), 105-131 · Zbl 1205.37018
[72] Hellekalek, P.; Niederreiter, H., Constructions of uniformly distributed sequences using the \(b\)-adic method, Unif. Distrib. Theory, 6, 1, 185-200 (2011) · Zbl 1333.11071
[73] Hinrichs, A., Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness, Math. Nachr., 283, 478-488 (2010) · Zbl 1198.11073
[74] Hinrichs, A.; Kritzinger, R.; Pillichshammer, F., Optimal order of \(L_p\)-discrepancy of digit shifted Hammersley point sets in dimension 2, Unif. Distrib. Theory, 10, 1, 115-133 (2015) · Zbl 1340.11062
[77] Hofer, R.; Kritzer, P.; Larcher, G.; Pillichshammer, F., Distribution properties of generalized van-der Corput-Halton sequences and their subsequences, Int. J. Number Theory, 5, 719-746 (2009) · Zbl 1188.11038
[78] Hua, L. K.; Wang, Y., Applications of Number Theory to Numerical Analysis (1981), Springer: Springer Berlin · Zbl 0465.10045
[79] Kritzer, P., A new upper bound on the star discrepancy of \((0, 1)\)-sequences, Integers, 5, 3 (2005), A11, 9pp. · Zbl 1092.11034
[80] Kritzer, P., Improved upper bounds on the star discrepancy of \((t, m, s)\)-nets and \((t, s)\)-sequences, J. Complexity, 22, 336-347 (2006) · Zbl 1155.11336
[81] Kritzer, P., On some remarkable properties of the two-dimensional Hammersley point set in base 2, J. Théor. Nombres Bordeaux, 18, 203-221 (2006) · Zbl 1103.11024
[82] Kritzer, P.; Larcher, G.; Pillichshammer, F., A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets, Ann. Mat. Pura Appl., 186, 229-250 (2007) · Zbl 1150.11026
[83] Kritzer, P.; Larcher, G.; Pillichshammer, F., Discrepancy estimates for index-transformed uniformly distributed sequences, Funct. Approx. Comment. Math., 51, 197-220 (2014) · Zbl 1368.11072
[84] Kritzer, P.; Pillichshammer, F., Improvements of the discrepancy of the van der Corput sequence, Math. Pannon., 16, 179-198 (2005) · Zbl 1119.11045
[85] Kritzer, P.; Pillichshammer, F., An exact formula for the \(L_2\) discrepancy of the shifted Hammersley point set, Unif. Distrib. Theory, 1, 1-13 (2006) · Zbl 1147.11041
[87] Kritzinger, R.; Pillichshammer, F., \(L_p\)-discrepancy of the symmetrized van der Corput sequence, Arch. Math., 104, 407-418 (2015) · Zbl 1320.11070
[88] Kuipers, L.; Niederreiter, H., Uniform Distribution of Sequences (1974), John Wiley: John Wiley New York, Reprint, Dover Publications, Mineola, NY, 2006 · Zbl 0281.10001
[89] Lambert, J. P., Some developments in optimal and quasi-Monte Carlo quadrature, and a new outlook on aclassical Chebyshev problem (1982), The Claremont Graduate School, (Ph.D. thesis
[90] Lambert, J. P., Quasi-Monte Carlo, low discrepancy sequences, and ergodic transformations, J. Comput. Appl. Math., 12&13, 419-423 (1985) · Zbl 0582.65002
[91] Larcher, G., On the star discrepancy of sequences in the unit interval, J. Complexity, 31, 474-485 (2015) · Zbl 1387.11066
[93] Larcher, G.; Niederreiter, H., Generalized \((t, s)\)-sequences, Kronecker-type sequences, and diophantine approximations of formal Laurent series, Trans. Amer. Math. Soc., 347, 2051-2073 (1995) · Zbl 0829.11039
[94] Larcher, G.; Pillichshammer, F., Walsh series analysis of the \(L_2\)-discrepancy of symmetrisized point sets, Monatsh. Math., 132, 1-18 (2001) · Zbl 1108.11309
[95] Larcher, G.; Pillichshammer, F., Sums of distances to the nearest integer and the discrepancy of digital nets, Acta Arith., 106, 379-408 (2003) · Zbl 1054.11039
[96] Larcher, G.; Pillichshammer, F., A metrical lower bound on the star discrepancy of digital sequences, Monatsh. Math., 174, 105-123 (2014) · Zbl 1293.11086
[97] Lemieux, C., Monte Carlo and Quasi-Monte Carlo Sampling (2009), Springer Series in Statistics, Springer: Springer Series in Statistics, Springer New York · Zbl 1269.65001
[98] Lemieux, C.; Faure, H., New perspectives on \((0, s)\)-sequences, (L’Ecuyer, P.; Owen, A. B., Monte Carlo and Quasi-Monte Carlo Methods 2008 (2009), Springer: Springer New York), 113-130 · Zbl 1228.11124
[99] Leobacher, G.; Pillichshammer, F., Introduction to quasi-Monte Carlo integration and applications, (Compact Textbooks in Mathematics (2014), Birkhäuser) · Zbl 1309.65006
[100] Lertchoosakul, P.; Nair, R., Distribution functions for subsequences of the van der Corput sequence, Indag. Math. (N.S.), 24, 593-601 (2013) · Zbl 1282.11091
[102] Markhasin, L., Discrepancy and integration in function spaces with dominating mixed smoothness, Dissertationes Math., 494, 1-81 (2013) · Zbl 1284.46030
[103] Markhasin, L., Discrepancy of generalized Hammersley type point sets in Besov spaces with dominating mixed smoothness, Unif. Distrib. Theory, 8, 1, 135-164 (2013) · Zbl 1349.11113
[104] Matoušek, J., On the \(L_2\)-discrepancy for anchored boxes, J. Complexity, 14, 527-556 (1998) · Zbl 0942.65021
[105] Matoušek, J., Geometric Discrepancy (1999), Springer: Springer Berlin · Zbl 0930.11060
[106] Meijer, H. G., The discrepancy of a \(g\)-adic sequence, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math., 30, 54-66 (1968) · Zbl 0155.37801
[107] Nelsen, R. B., An introduction to copulas, (Lecture Notes in Statistics, vol. 139 (1999), Springer-Verlag: Springer-Verlag New York) · Zbl 0909.62052
[108] Niederreiter, H., Point sets and sequences with small discrepancy, Monatsh. Math., 104, 273-337 (1987) · Zbl 0626.10045
[109] Niederreiter, H., Low-discrepancy and low-dispersion sequences, J. Number Theory, 30, 51-70 (1988) · Zbl 0651.10034
[110] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods (1992), SIAM: SIAM Philadelphia · Zbl 0761.65002
[111] Niederreiter, H.; Xing, C., Quasirandom points and global function fields, (Cohen, S.; Niederreiter, H., Finite Fields and Applications. Finite Fields and Applications, London Math. Soc. Lecture Note Series, vol. 233 (1996), Cambridge University Press: Cambridge University Press Cambridge), 269-296 · Zbl 0932.11050
[112] Niederreiter, H.; Xing, C., (Rational Points on Curves over Finite Fields.. Rational Points on Curves over Finite Fields., London Math. Soc. Lecture Notes Series, vol. 285 (2001), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0971.11033
[113] Ninomiya, S., Constructing a new class of low-discrepancy sequences by using the \(\beta \)-adic transformation, Math. Comput. Simul., 47, 403-418 (1998)
[114] Ninomiya, S., On the discrepancy of the \(\beta \)-adic van der Corput sequence, J. Math. Sci., Univ. Tokyo, 5, 345-366 (1998) · Zbl 0971.11043
[115] Ökten, G., Generalized von Neumann-Kakutani transformation and random-start scrambled Halton sequences, J. Complexity, 25, 318-331 (2009) · Zbl 1167.65320
[116] Ostromoukhov, V., Recent progress in improvement of extreme discrepancy and star discrepancy of one-dimensional sequences, (L’Ecuyer, P.; Owen, A. B., Monte-Carlo and Quasi-Monte Carlo Methods 2008 (2009), Springer: Springer New York), 561-572 · Zbl 1228.11119
[117] Pagès, G., Van der Corput sequences, Kakutani transforms and one-dimensional numerical integration, J. Comput. Appl. Math., 44, 21-39 (1992) · Zbl 0765.41033
[118] Pausinger, F.; Schmid, W. Ch., A good permutation for one-dimensional diaphony, Monte Carlo Methods Appl., 16, 307-322 (2010) · Zbl 1206.11096
[119] Philipp, W.; Stout, W., Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc., 2, 161 (1975) · Zbl 0361.60007
[120] Pillichshammer, F., Improved upper bounds for the star discrepancy of digital nets in dimension 3, Acta Arith., 108, 167-189 (2003) · Zbl 1054.11040
[121] Pillichshammer, F., On the discrepancy of \((0, 1)\)-sequences, J. Number. Theory, 104, 301-314 (2004) · Zbl 1048.11061
[122] Pillichshammer, F., On the discrepancy of the van der Corput sequence indexed by Fibonacci numbers, Fibonacci Quart., 50, 234-235 (2012) · Zbl 1290.11111
[123] Proinov, P. D., On irregularities of distribution, C. R. Acad. Bulgare Sci., 39, 31-34 (1986) · Zbl 0616.10042
[124] Proinov, P. D., Symmetrization of the van der Corput generalized sequences, Proc. Japan Acad. Ser. A Math. Sci., 64, 159-162 (1988) · Zbl 0654.10049
[125] Proinov, P. D.; Atanassov, E. Y., On the distribution of the van der Corput generalized sequences, C. R. Acad. Sci. Paris Sér. I Math., 307, 895-900 (1988) · Zbl 0654.10051
[126] Proinov, P. D.; Grozdanov, V. S., Symmetrization of the van der Corput-Halton sequence, C. R. Acad. Bulgare Sci., 40, 8, 5-8 (1987) · Zbl 0621.10035
[127] Proinov, P. D.; Grozdanov, V. S., On the diaphony of the van der Corput-Halton sequence, J. Number Theory, 30, 94-104 (1988) · Zbl 0654.10050
[128] Ramshaw, L., On the discrepancy of the sequence formed by the multiples of an irrational number, J. Number Theory, 13, 138-175 (1981) · Zbl 0458.10035
[129] Roth, K. F., On irregularities of distribution, Mathematika, 1, 73-79 (1954) · Zbl 0057.28604
[130] Schmidt, K., On periodic expansions of Pisot numbers and Salem numbers, Bull. Lond. Math. Soc., 12, 269-278 (1980) · Zbl 0494.10040
[131] Schmidt, W. M., Irregularities of distribution. VI, Compos. Math., 24, 63-74 (1972) · Zbl 0226.10034
[132] Schmidt, W. M., Irregularities of distribution. VII, Acta Arith., 21, 45-50 (1972) · Zbl 0244.10035
[133] Schmidt, W. M., Irregularities of distribution. VIII, Trans. Amer. Math. Soc., 198, 1-22 (1974) · Zbl 0278.10036
[134] Schmidt, W. M., Irregularities of distribution. X, (Number Theory and Algebra (1977), Academic Press: Academic Press New York), 311-329 · Zbl 0373.10020
[136] Sobol’, I. M., Distribution of points in a cube and approximate evaluation of integrals, Z˘ Vyčisl. Mat. i Mat. Fiz., 7, 784-802 (1967)
[137] Steiner, W., Regularities of the distribution of \(\beta \)-adic van der Corput sequences, Monatsh. Math., 149, 67-81 (2006) · Zbl 1111.11039
[138] Steiner, W., Regularities of the distribution of abstract van der Corput sequences, Unif. Distrib. Theory, 4, 2, 81-100 (2009) · Zbl 1249.11076
[139] Struckmeier, J., Fast generation of low-discrepancy sequences, J. Comput. Appl. Math., 61, 1, 29-41 (1995) · Zbl 0840.65006
[140] Sunklodas, J., The rate of convergence in the central limit theorem for strongly mixing random variables, Litovsk. Mat. Sb., 24, 174-185 (1984) · Zbl 0558.60023
[141] Tezuka, S., Polynomial arithmetic analogue of Halton sequences, ACM Trans. Model. Comput. Simul., 3, 99-107 (1993) · Zbl 0846.11045
[142] Tezuka, S., Uniform Random Numbers: Theory and Practice (1995), Kluwer International Series in Engeneering and Computer Science. Kluwer: Kluwer International Series in Engeneering and Computer Science. Kluwer Boston · Zbl 0841.65004
[143] Tezuka, S., On the discrepancy of generalized Niederreiter sequences, J. Complexity, 29, 240-247 (2013) · Zbl 1286.11115
[144] Tijdeman, R.; Wagner, G., A sequence has almost nowhere small discrepancy, Monatsh. Math., 90, 315-320 (1980) · Zbl 0435.10030
[145] Vagharshakyan, A., Lower bound for \(L_1\)-discrepancy, Mathematika, 59, 365-379 (2013) · Zbl 1282.11096
[146] van der Corput, J. G., Verteilungsfunktionen I-II, Proc. Akad. Amsterdam, 38 (1935), 813-821, 1058-1066 · Zbl 0012.34705
[147] Wagner, G., On a problem of Erdős in diophantine approximation, Bull. Lond. Math. Soc., 12, 81-88 (1980) · Zbl 0427.10031
[148] Walters, P., An introduction to Ergodic theory, (Graduate Texts in Mathematics, vol. 79 (1982), Springer-Verlag: Springer-Verlag New York-Berlin) · Zbl 0475.28009
[149] Wang, X.; Hickernell, F., Randomized Halton sequences, Math. Comput. Modelling, 32, 7-8, 887-899 (2000) · Zbl 0965.65005
[150] Weyl, H., Über die Gleichverteilung mod, Eins. Math. Ann., 77, 313-352 (1916), (German) · JFM 46.0278.06
[151] White, B. E., Mean-square discrepancies of the Hammersley and Zaremba sequences for arbitrary radix, Monatsh. Math., 80, 219-229 (1975) · Zbl 0322.65002
[152] Wohlfarter, A., Distribution Properties of Generalized van der Corput Sequences (2009), TU Vienna, (Ph.D. thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.