×

Geometric disintegration and star-shaped distributions. (English) Zbl 1330.60028

Summary: Geometric and stochastic representations are derived for the big class of \(p\)-generalized elliptically contoured distributions, and (generalizing Cavalieri’s and Torricelli’s method of indivisibles in a non-Euclidean sense) a geometric disintegration method is established for deriving even more general star-shaped distributions. Applications to constructing non-concentric elliptically contoured and generalized von Mises distributions are presented.

MSC:

60E05 Probability distributions: general theory
60D05 Geometric probability and stochastic geometry
28A50 Integration and disintegration of measures
28A75 Length, area, volume, other geometric measure theory
51F99 Metric geometry

References:

[1] Arellano-Valle, RB, Richter, W-D: On skewed continuous ln,p-symmetric distributions. Chilean J. Stat. 3(2), 193-212 (2012). · Zbl 1449.60030
[2] Balkema, AA, Embrechts, P, Nolde, N: Meta densities and the shape of their sample clouds. J. Multivariate Anal. 101, 1738-1754 (2010). · Zbl 1198.60012 · doi:10.1016/j.jmva.2010.02.010
[3] Balkema, AA, Nolde, N: Asymptotic independence for unimodal densities. Adv. Appl. Prob. 42, 411-432 (2010). · Zbl 1239.60007 · doi:10.1239/aap/1275055236
[4] Barndorff-Nielsen, OE, Blaesild, P, Eriksen, PS: Decomposition and Invariance of Measures, and Statistical Transformation Models, Lecture Notes in Statistics, Vol. 58. Springer, New York (1989). · Zbl 1088.62500 · doi:10.1007/978-1-4612-3682-5
[5] Barthe, F.; Csörnyei, M.; Naor, A., A note on simulataneous polar and cartesian decomposition (2003), Berlin · Zbl 1036.52004
[6] Batún-Cutz, J, Gonzáles-Farías, G, Richter, W-D: Maximum distributions for l2,p-symmetric vectors are skewed l1,p-symmetric distributions. Stat. Probab. Lett. 83, 2260-2268 (2013). · Zbl 1287.60019 · doi:10.1016/j.spl.2013.06.022
[7] Dietrich, T, Kalke, S, Richter, W-D: Stochastic representations and a geometric parametrization of the two-dimensional Gaussian law. Chilean J. Stat. 4(2), 27-59 (2013). · Zbl 1449.60011
[8] Eaton, ML: Multivariate Statistics, a Vector Space Approach. Wiley, New York (1983). · Zbl 0587.62097
[9] Eaton, M. L., Group invariance applications in statistics (1989), Hayward, California · Zbl 0749.62005
[10] Fang, K-T, Kotz, S, Ng, KW: Symmetric Multivariate and Related Distributions. Chapman & Hall, London (1990). · Zbl 0699.62048 · doi:10.1007/978-1-4899-2937-2
[11] Farrell, RH: Techniques of, Multivariate Calculation. Lecture Notes in Mathematics 520. Springer, Berlin (1976). · Zbl 0337.62033
[12] Farrell, R H: Multivariate Calculation: Use of the Continuous Groups. Springer, Berlin (1985). · Zbl 0561.62048 · doi:10.1007/978-1-4613-8528-8
[13] Fernandez, C, Osiewalski, J, Steel, MFJ: Modeling and inference with v-spherical distributions. J. Amer. Stat. Assoc. 90, 1331-1340 (1995). · Zbl 0868.62045
[14] Gómez, E, Gomez-Viilegas, MA, Marín, JM: A multivariate generalization of the power exponential family of distributions. Commun. Stat. Theory Methods. 27(3), 589-600 (1998). · Zbl 0895.62053 · doi:10.1080/03610929808832115
[15] Günzel, T, Richter, W-D, Scheutzow, S, Schicker, K, Venz, J: Geometric approach to the skewed normal distribution. J. Stat. Plann. Inference. 142, 3209-3224 (2012). · Zbl 1348.60017 · doi:10.1016/j.jspi.2012.06.009
[16] Gupta, A, Song, D: lp-norm spherical distributions. J. Stat. Plann. Inference. 60, 241-260 (1997). · Zbl 0900.62270 · doi:10.1016/S0378-3758(96)00129-2
[17] Henschel, V: Exact distributions in the model of a regression line for the threshold parameter with exponential distribution of errors. Kybernetika. 37(6), 703-723 (2001). · Zbl 1263.62020
[18] Henschel, V: Statistical inference in simplicially contoured sample distributions. Metrika. 56, 215-228 (2002). · Zbl 1433.62070 · doi:10.1007/s001840100174
[19] Henschel, V, Richter, W-D: Geometric generalization of the exponential law. J. Multivariate Anal. 81, 189-204 (2002). · Zbl 1003.60019 · doi:10.1006/jmva.2001.2001
[20] Hoffmann-Jorgensen, J: Probability with a View Towards Statistics II. Chapman & Hall, New York (1994). · Zbl 0821.62003 · doi:10.1007/978-1-4899-3019-4
[21] Joenssen, DW, Vogel, J: A power study of goodness-of-fit tests for multivariate normality implemented in R. J. Stat. Comput. Simul. 75, 93-107 (2012).
[22] Kalke, S: Geometrische Strukturen ln,p-symmetrischer charakteristischer Funktionen. Dissertation, Universität Rostock (2013).
[23] Kallenberg, O: Probabilistic Symmetries and Invariance Principles. Springer, New York (2005). · Zbl 1084.60003
[24] Kamiya, H, Takemura, A, Kuriki, S: Star-shaped distributions and their generalizations. J. Stat. Plann. Inference. 138, 3429-3447 (2008). · Zbl 1145.62043 · doi:10.1016/j.jspi.2006.03.016
[25] Kinoshita, K, Resnick, SI: Convergence of scaled random samples in R. Ann. Probab. 19, 1640-1663 (1991). · Zbl 0746.60030 · doi:10.1214/aop/1176990227
[26] Koehn, U: Global cross sections and the densities of maximal invariants. Ann. Math. Stat. 41(6), 2045-2056 (1970). · Zbl 0215.26404 · doi:10.1214/aoms/1177696704
[27] Koshevoy, G, Mosler, K: Zonoid trimming for multivariate distributions. Ann. Stat. 9, 1998-2017 (1997). · Zbl 0881.62059
[28] Molchanov, I: Convex and star-shaped sets associated with multivariate stable distributions I: Moments and densities. J. Multiv. Anal. 100(10), 2195-2213 (2009). · Zbl 1196.60029 · doi:10.1016/j.jmva.2009.04.003
[29] Mosler, K: Multivariate Dispersion, Central, Regions and Depth: The Lift Zonoid Approach. Springer, New York (2002). · Zbl 1027.62033 · doi:10.1007/978-1-4613-0045-8
[30] Mosler, K: Depth statistics (2013). http://arxiv.org/pdf/1207.4988.pdfhttp://arxiv.org/pdf/1207.4988.pdf.
[31] Moszyńska, M, Richter, W-D: Reverse triangle inequality. Antinorms and semi-antinorms. Studia Scientiarum Mathematicarum Hungarica. 49(1), 120-138 (2012). · Zbl 1299.26042 · doi:10.1556/SScMath.49.2012.1.1192
[32] Muirhead, RJ: Aspects of Multivariate Statistical Theory. Wiley, New York (1982). · Zbl 0556.62028 · doi:10.1002/9780470316559
[33] Nachbin, L: The Haar Integral. New York (1976). · Zbl 0331.43001
[34] Naor, A: The surface measure and cone measure on the sphere of lpn \({l^n_p}\) . Trans. Am. Math. Soc. 359(3), 1045-1080 (2007). · Zbl 1109.60006 · doi:10.1090/S0002-9947-06-03939-0
[35] Nardon, M, Pianca, P: Simulation techniques for generalized Gaussian densities. J. Stat. Comp. Simul. 11, 1317-1329 (2009). · Zbl 1178.62010 · doi:10.1080/00949650802290912
[36] Ng, K-W, Tian, G: Characteristic functions of 𝔩 \(1 \mathfrak{l}_1\) -spherical and 𝔩 \(1 \mathfrak{l}_1\) -norm symmetric distributions and their applications. J. Multiv. Anal. 76(2), 192-213 (2001). · Zbl 0982.60005 · doi:10.1006/jmva.2000.1910
[37] Nolde, N: Geometric interpretation of the residual dependence coefficient. J. Multiv. Anal. 123, 85-95 (2014). · Zbl 1360.60100 · doi:10.1016/j.jmva.2013.08.018
[38] Osiewalski, J, Steel, MFJ: Robust Basian inference in lq-spherical models. Biometrika. 80(2), 456-460 (1993). · Zbl 0778.62026
[39] Pewsey, A, Neuhäuser, M, Graeme, DR: Circular Statistics in R. Oxford (2013). · Zbl 1282.62137
[40] Pogány, TK, Nadarajah, S: On the characteristic function of the generalized normal distribution. C.R. Math., Acad. Sci. Paris. 203(3), 203-206 (2010). · Zbl 1182.62015 · doi:10.1016/j.crma.2009.12.010
[41] Rachev, ST, Rüschendorf, L: Approximate independence of distributions on spheres and their stability properties. Ann. Probab. 19(3), 1311-1337 (1991). · Zbl 0732.62014 · doi:10.1214/aop/1176990346
[42] Richter, W-D: Laplace Gauss integrals, Gaussian measure asymptotic behaviour and probabilities of moderate deviations. Z. Anal. Anwendungen. 4(3), 257-267 (1985). · Zbl 0572.60035
[43] Richter, W-D: The Laplace integral and probabilities of moderate deviations in Rk. (In Russian). Translation: J. Math. Sci. 38(6), 2391-2397 (1987). · Zbl 0667.60036
[44] Richter, W-D: Eine geometrische Methode in der Stochastik. Rostocker Mathematisches Kolloquium. 44, 63-72 (1991). · Zbl 0752.60002
[45] Richter, W-D: Generalized spherical and simplicial coordinates. J. Math. Anal. Appl. 336, 1187-1202 (2007). · Zbl 1143.60017 · doi:10.1016/j.jmaa.2007.03.047
[46] Richter, W-D: Continuous ln,p-symmetric distributions. Lithuanian Math. J. 49, 93-108 (2009). · Zbl 1177.60019 · doi:10.1007/s10986-009-9030-3
[47] Richter, W-D: On the ball number function. Lithuanian Math. J. 51(3), 440-449 (2011). · Zbl 1292.28009 · doi:10.1007/s10986-011-9138-0
[48] Richter, W-D: Circle numbers for star discs. ISRN Geometry. (16) (2011a). Article ID 479262. · Zbl 1218.28002
[49] Richter, W-D: Ellipses numbers and geometric measure representations. J. Appl. Anal. 17, 165-179 (2011b). · Zbl 1276.51009 · doi:10.1515/jaa.2011.011
[50] Richter, W-D: Exact distributions under non-standard model assumptions. AIP Conf. Proc. 1479(442) (2012). doi:10.1063/1.4756160.
[51] Richter, W-D: Geometric and stochastic representations for elliptically contoured distributions. Commun. Stat.: Theory Methods. 42(4), 579-602 (2013). · Zbl 1277.60032 · doi:10.1080/03610926.2011.611320
[52] Richter, W-D; Knif, J. (ed.); Pape, B. (ed.), Classes of standard Gaussian random variables and their generalizations (2014), Vaasa
[53] Richter, W-D, Venz, J: Geometric representations of multivariate skewed elliptically contoured distributions. Chilean J. Stat. 5(2), 20 (2014). · Zbl 1449.60021
[54] Sasvári, Z: Multivariate Characteristic and Correlation Functions. De Gruyter, Berlin (2013). · Zbl 1276.62034 · doi:10.1515/9783110223996
[55] Schechtman, G, Zinn, J: On the volume of the intersection of two lpn \({l_p^n}\) balls. Proc. Am. Math. Soc. 110(1), 217-224 (1990). · Zbl 0704.60017
[56] Schindler, W: Measures with Symmetry Properties. Springer, Berlin-Heidelberg (2003). · Zbl 1065.28007 · doi:10.1007/b80163
[57] Schoenberg, IJ: Metric spaces and completely monotone functions. Ann. Math. 39, 811-841 (1938). · Zbl 0019.41503 · doi:10.2307/1968466
[58] Scholz, SP: Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. Dissertation, Universität Dortmund (2002). · Zbl 1287.60019
[59] Song, D, Gupta, AK: lp-norm uniform distributions. Proc. Am.Math. Soc. 125(2), 595-601 (1997). · Zbl 0866.62026 · doi:10.1090/S0002-9939-97-03900-2
[60] Szablowski, PJ: Uniform distributions on spheres in finite dimensional lα and their generalizations. J. Multivariate Anal. 64, 103-107 (1998). · Zbl 0893.62044 · doi:10.1006/jmva.1997.1718
[61] Takemura, A, Kuriki, S: Theory of cross sectionally contoured distributions and its applications. Discussion, Paper Series 96-F-15. Faculty of Economics, University of Tokyo (1996). http://www.stat.t.u-tokyo.ac.jp/ takemura/papers/dp96f15.pdfhttp://www.stat.t.u-tokyo.ac.jp/ takemura/papers/dp96f15.pdf.
[62] von Mises, R: Über die Ganzzahligkeit der Atomgewichte und verwandte Fragen. Physikalische Zeitschrift. 19, 490-500 (1918). · JFM 46.1493.01
[63] Wijsman, RA, Cross-sections of orbits and their application to densities of maximal invariants (1967), Berkeley and Los Angeles
[64] Wijsman, RA: Global cross sections as a tool for factorization of measures and distribution of maximal invariant. Sankhya. 48A, 1-42 (1986). · Zbl 0618.62006
[65] Wijsman, R A: Invariant Measures on Groups and Their Use in Statistics, Hayward (1990). · Zbl 0803.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.