×

Geometric interpretation of the residual dependence coefficient. (English) Zbl 1360.60100

Summary: The residual dependence coefficient was originally introduced by A. W. Ledford and J. A. Tawn [Biometrika 83, No. 1, 169–187 (1996; Zbl 0865.62040)] as a measure of residual dependence between extreme values in the presence of asymptotic independence. We present a geometric interpretation of this coefficient with the additional assumptions that the random samples from a given distribution can be scaled to converge onto a limit set and that the marginal distributions have Weibull-type tails. This result leads to simple and intuitive computations of the residual dependence coefficient for a variety of distributions.

MSC:

60G70 Extreme value theory; extremal stochastic processes
62G20 Asymptotic properties of nonparametric inference
62G32 Statistics of extreme values; tail inference

Citations:

Zbl 0865.62040

Software:

QRM
Full Text: DOI

References:

[1] Abdous, B.; Genest, C.; Rémillard, B., Dependence properties of meta-elliptical distributions, (Duchesne, P.; Rémillard, B., Statistical Modeling and Analysis for Complex Data Problems (2005), Springer), 1-15 · Zbl 1071.62500
[2] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1965), Dover: Dover New York
[3] Azzalini, A.; Dalla Valle, A., The multivariate skew-normal distribution, Biometrika, 83, 715-726 (1996) · Zbl 0885.62062
[4] Balkema, A. A.; Embrechts, P.; Nolde, N., Meta densities and the shape of their sample clouds, J. Multivariate Analysis, 101, 1738-1754 (2010) · Zbl 1198.60012
[5] Balkema, A. A.; Nolde, N., Asymptotic independence for unimodal densities, Adv. Appl. Probab., 42, 411-432 (2010) · Zbl 1239.60007
[6] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular Variation (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0617.26001
[8] Cambanis, S.; Huang, S.; Simons, G., On the theory of elliptically contoured distributions, J. Multivariate Anal., 11, 368-385 (1981) · Zbl 0469.60019
[9] Chang, S. M.; Genton, M. G., Extreme value distributions for the skew-symmetric family of distributions, Comm. Statist. Theory Methods, 36, 1705-1717 (2007) · Zbl 1124.62034
[10] Coles, S. G.; Heffernan, J. E.; Tawn, J. A., Dependence measures for extreme value analyses, Extremes, 2, 339-365 (1999) · Zbl 0972.62030
[11] Davis, R. A.; Mulrow, E.; Resnick, S. I., Almost sure limit sets of random samples in \(R^d\), Adv. Appl. Probab., 20, 573-599 (1988) · Zbl 0656.60026
[12] de Haan, L.; Ferreira, A., Extreme Value Theory. An Introduction (2006), Springer-Verlag · Zbl 1101.62002
[13] Dominici, D., The inverse of the cumulative standard normal probability function, Integral transforms and special functions, 14, 281-292 (2003) · Zbl 1035.60009
[14] Draisma, G.; Drees, H.; Ferreira, A.; de Haan, L., Bivariate tail estimation: dependence in asymptotic independence, Bernoulli, 10, 251-280 (2004) · Zbl 1058.62043
[15] Fisher, L., Limiting sets and convex hulls of samples from product measures, Ann. Math. Statist., 40, 1824-1832 (1969) · Zbl 0183.47501
[16] Frick, M., Measures of multivariate asymptotic dependence and their relation to spectral expansions, Metrika, 75, 819-831 (2012) · Zbl 1410.62072
[17] Geoffroy, J., Localisation asymptotique du polyèdre d’appui d’un échantillon laplacien à \(k\) dimensions, Publ. Inst. Statist. Univ. Paris, X, 212-228 (1961) · Zbl 0102.35101
[18] Hashorva, E., On the residual dependence index of elliptical distributions, Statist. Probab. Lett., 80, 1070-1078 (2010) · Zbl 1190.62107
[19] Hashorva, E., Exact tail asymptotics in bivariate scale mixture models, Extremes, 15, 109-128 (2012) · Zbl 1329.60150
[20] Hashorva, E.; Weng, Z., Tail asymptotic of weibull-type risks, Statistics (2013)
[21] Heffernan, J. E., A directory of coefficients of tail dependence, Extremes, 3, 279-290 (2000) · Zbl 0979.62040
[22] Hua, L.; Joe, H., Tail order and intermediate tail dependence of multivariate copulas, J. Multivariate Anal., 102, 1454-1471 (2011) · Zbl 1221.62079
[23] Joe, H., Multivariate Models and Dependence Concepts (1997), Chapman & Hall · Zbl 0990.62517
[24] Kinoshita, K.; Resnick, S. I., Convergence of scaled random samples in \(R^d\), Ann. Probab., 19, 1640-1663 (1991) · Zbl 0746.60030
[25] Ledford, A.; Tawn, J., Statistics for near independence in multivariate extreme values, Biometrika, 83, 169-187 (1996) · Zbl 0865.62040
[26] Ledford, A.; Tawn, J. A., Modelling dependence within joint tail regions, J. Roy. Statist. Soc. B, 59, 475-499 (1997) · Zbl 0886.62063
[27] Ledford, A.; Tawn, J., Concomitant tail behaviour for extremes, Adv. Appl. Probab., 30, 197-215 (1998) · Zbl 0905.60034
[28] Matheron, G., Random Sets and Integral Geometry (1975), John Wiley & Sons: John Wiley & Sons New York · Zbl 0321.60009
[29] McNeil, A. J.; Frey, R.; Embrechts, P., Quantitative Risk Management: Concepts, Techniques, Tools (2005), Princeton University Press: Princeton University Press Princeton · Zbl 1089.91037
[30] Peng, L., Estimation of the coefficient of tail dependence in bivariate extremes, Statist. Probab. Lett., 43, 399-409 (1999) · Zbl 0958.62049
[31] Reiss, R.-D., Approximate Distributions of Order Statistics (1989), Springer: Springer New York · Zbl 0682.62009
[32] Resnick, S. I., Extreme Values, Regular Variation, and Point Processes (1987), Springer · Zbl 0633.60001
[33] Resnick, S. I., Stability of maxima of random variables defined on a markov chain, Adv. Appl. Probab., 4, 285-295 (1972) · Zbl 0267.60090
[34] Schlueter, S.; Fischer, M., The weak tail dependence coefficient of the elliptical generalized hyperbolic distribution, Extremes, 15, 159-174 (2012) · Zbl 1329.62236
[35] Sibuya, M., Bivariate extreme statistics, Ann. Inst. Statist. Math., 11, 195-210 (1960) · Zbl 0095.33703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.