×

Farkas’ lemma in random locally convex modules and Minkowski-Weyl type results in \(L^0(\mathcal F,R^n)\). (English) Zbl 1329.46007

Summary: In this paper, we investigate the structure of a finitely generated \(L^0\)-positively homogeneous and \(L^0\)-convex cone in a random locally convex module. First, we establish a Farkas type characterization for such a kind of cone. Then, we can further give some Minkowski-Weyl type results for the specific case when the random locally convex module is the space \(L^0(\mathcal F,\mathbb{R}^n)\) of equivalence classes of \(\mathbb{R}^n\)-valued random variables.

MSC:

46A55 Convex sets in topological linear spaces; Choquet theory
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
52A22 Random convex sets and integral geometry (aspects of convex geometry)
Full Text: DOI

References:

[1] Bertsekas, D. P.; Nedić, A.; Ozdaglar, A. E., Convex Analysis and Optimization (2003), Athena Scientific: Athena Scientific Belmont · Zbl 1140.90001
[2] Boţ, R. I.; Wanka, G., Farkas-type results with conjugate functions, SIAM J. Optim., 15, 540-554 (2005) · Zbl 1114.90147
[3] Dinh, N.; Goberna, M. A.; López, M. A., From linear to convex systems: consistency, Farkas’ lemma and applications, J. Convex Anal., 13, 113-133 (2006) · Zbl 1137.90684
[4] Dunford, N.; Schwartz, J. T., Linear Operators (I) (1957), Interscience: Interscience New York
[5] Farkas, J., Über die theorie der einfachen ungleichungen, J. Reine Angew. Math., 124, 1-27 (1902) · JFM 32.0169.02
[6] Föllmer, H.; Schied, A., (Stochastic Finance, An Introduction in Discrete Time. Stochastic Finance, An Introduction in Discrete Time, de Gruyter Stud. Math., vol. 27 (2002)) · Zbl 1125.91053
[7] Guo, T. X., Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal., 258, 3024-3047 (2010) · Zbl 1198.46058
[8] Guo, T. X., Recent progress in random metric theory and its applications to conditional risk measures, Sci. China Math., 54, 633-660 (2011) · Zbl 1238.46058
[9] Guo, T. X., Some basic theories of random normed linear spaces and random inner product spaces, Acta Anal. Funct. Appl., 1, 2, 160-184 (1999) · Zbl 0965.46010
[10] Guo, T. X., Survey of recent developments of random metric theory and its applications in China (II), Acta Anal. Funct. Appl., 3, 208-230 (2001) · Zbl 0989.54036
[11] Guo, T. X.; Peng, S. L., A characterization for an \(L(\mu, K)\)-topological module to admit enough canonical module homomorphisms, J. Math. Anal. Appl., 263, 580-599 (2001) · Zbl 1014.46018
[12] Guo, T. X.; Shi, G., The algebraic structure of finitely generated \(L^0(F, K)\)-modules and the Helly theorem in random normed modules, J. Math. Anal. Appl., 381, 833-842 (2011) · Zbl 1230.46064
[13] Guo, T. X.; Xiao, H. X.; Chen, X. X., A basic strict separation theorem in random locally convex modules, Nonlinear Anal., 71, 3794-3804 (2009) · Zbl 1184.46068
[14] Guo, T. X.; Yang, Y. J., Ekeland’s variational principle for an \(\overline{L}^0\)-valued function on a complete random metric space, J. Math. Anal. Appl., 389, 1-14 (2012) · Zbl 1231.49014
[15] Guo, T. X.; Zhu, L. H., A characterization of continuous module homomorphisms on random seminormed modules and its applications, Acta Math. Sin. (Engl. Ser.), 19, 1, 201-208 (2003) · Zbl 1027.60069
[16] Jeyakumar, V., Farkas lemma: generalizations, (Floudas, C. A.; Pardalos, P. M., Encyclopedia of Optimization, vol. II (2001), Kluwer Academic Publishers), 87-91 · Zbl 1027.90001
[17] Minkowski, H., Theorie der Konvexen Körper, Insbesondere Bergründung Ihres Ober Flächenbegriffs, Gesammelte Abhandlungen II (1911), Teubner: Teubner Leipzig
[18] Schweizer, B.; Sklar, A., Probabilistic Metric Spaces (1983), Elsevier, Dover Publications: Elsevier, Dover Publications New York, 2005 · Zbl 0546.60010
[19] Wets, R. J.-B., Elementary constructive proofs of the theorems of Farkas, Minkowski and Weyl, (Gabszewicz, J. J.; Richard, J.-F.; Wolsey, L. A., Economic Decision Making: Games, Econometrics and Optimization, Contributions in Honour of Jacques Dreze (1990), Elsevier-Science), 427-432 · Zbl 0718.52005
[20] Weyl, H., Elementare theorie der konvexen polyeder, Comment. Math. Helv., 7, 290-306 (1935) · JFM 61.1382.01
[21] Wu, M. Z., The Bishop-Phelps theorem in complete random normed modules endowed with the \((\varepsilon, \lambda)\)-topology, J. Math. Anal. Appl., 391, 648-652 (2012) · Zbl 1245.46059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.