×

From the Poincaré theorem to generators of the unit group of integral group rings of finite groups. (English) Zbl 1326.16034

Let \(\mathcal O\) be a \(\mathbb Z\)-order in a finite dimensional semisimple \(\mathbb Q\)-algebra. The determination of the unit group \(\mathcal O^\times\) of \(\mathcal O\), a finitely presented group, is a notoriously difficult problem. For a group ring \(\mathcal O\) over an abelian group, H. Bass [Topology 4, 391-410 (1966; Zbl 0166.02401)] proved a generalized Dirichlet unit theorem which implies that the “Bass units” generate a subgroup of finite index in \(\mathcal O^\times\). Refinements of this theorem have been obtained by Ritter and Segal, and E. Jespers and G. Leal [Manuscr. Math. 86, No. 4, 479-498 (1995; Zbl 0834.16034)]. The latter result works for a large class of finite groups, with the exception of those which admit a non-abelian fixedpoint-free epimorphic image. Moreover, some exceptional components of the rational group algebra must be excluded. Then it is shown that the Bass units and so-called bicyclic units generate a subgroup of finite index.
The paper under review provides a general method to handle two types of exceptional simple components, namely, \(2\times 2\) matrix algebras over fields as well as quaternion algebras over \(\mathbb Q\) or over an imaginary quadratic field. The results are obtained via actions on hyperbolic spaces. This leads to very effective algorithms which calculate generating systems for subgroups of finite index.

MSC:

16U60 Units, groups of units (associative rings and algebras)
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
16S34 Group rings
20F05 Generators, relations, and presentations of groups

Software:

Congruence

References:

[1] Amitsur, S. A., Finite subgroups of division rings, Trans. Amer. Math. Soc., 80, 361-386 (1955) · Zbl 0065.25603
[2] Bak, Anthony; Rehmann, Ulf, The congruence subgroup and metaplectic problems for \({\rm SL}_{n\geq 2}\) of division algebras, J. Algebra, 78, 2, 475-547 (1982) · Zbl 0495.20022 · doi:10.1016/0021-8693(82)90094-1
[3] Banieqbal, Behnam, Classification of finite subgroups of \(2\times 2\) matrices over a division algebra of characteristic zero, J. Algebra, 119, 2, 449-512 (1988) · Zbl 0663.20052 · doi:10.1016/0021-8693(88)90069-5
[4] Bass, Hyman, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, Topology, 4, 391-410 (1965) · Zbl 0166.02401
[5] Bass, H.; Milnor, J.; Serre, J.-P., Solution of the congruence subgroup problem for \({\rm SL}_n\,(n\geq 3)\) and \({\rm Sp}_{2n}\,(n\geq 2)\), Inst. Hautes \'Etudes Sci. Publ. Math., 33, 59-137 (1967) · Zbl 0174.05203
[6] Beardon, Alan F., The geometry of discrete groups, Graduate Texts in Mathematics 91, xii+337 pp. (1995), Springer-Verlag: New York:Springer-Verlag
[7] Bridson, Martin R.; Haefliger, Andr{\'e}, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 319, xxii+643 pp. (1999), Springer-Verlag: Berlin:Springer-Verlag · Zbl 0988.53001
[8] Corrales, Capi; Jespers, Eric; Leal, Guilherme; del R{\'{\i }}o, Angel, Presentations of the unit group of an order in a non-split quaternion algebra, Adv. Math., 186, 2, 498-524 (2004) · Zbl 1053.16024 · doi:10.1016/j.aim.2003.07.015
[9] Dooms, Ann; Jespers, Eric; Konovalov, Alexander, From Farey symbols to generators for subgroups of finite index in integral group rings of finite groups, J. K-Theory, 6, 2, 263-283 (2010) · Zbl 1209.16030 · doi:10.1017/is009012013jkt079
[10] Elstrodt, J.; Grunewald, F.; Mennicke, J., Groups acting on hyperbolic space, Springer Monographs in Mathematics, xvi+524 pp. (1998), Springer-Verlag: Berlin:Springer-Verlag · Zbl 0888.11001
[11] Fl{\`“o}ge, Dieter, Zur Struktur der \({\rm PSL}_2\) \'”uber einigen imagin\"ar-quadratischen Zahlringen, Math. Z., 183, 2, 255-279 (1983) · Zbl 0498.20036 · doi:10.1007/BF01214824
[12] Giambruno, Antonio; Sehgal, Sudarshan K., Generators of large subgroups of units of integral group rings of nilpotent groups, J. Algebra, 174, 1, 150-156 (1995) · Zbl 0829.16022 · doi:10.1006/jabr.1995.1121
[13] Gromov, M., Hyperbolic groups. Essays in group theory, Math. Sci. Res. Inst. Publ. 8, 75-263 (1987), Springer: New York:Springer · Zbl 0634.20015 · doi:10.1007/978-1-4613-9586-7\_3
[14] [jeskiefjuretall] E. Jespers, S. O. Juriaans, A. Kiefer, A. de A. e Silva, and A. C. Souza Filho, Poincar\'e bisectors in hyperbolic spaces, preprint. · Zbl 1326.16034
[15] Jespers, E.; Leal, G., Degree \(1\) and \(2\) representations of nilpotent groups and applications to units of group rings, Manuscripta Math., 86, 4, 479-498 (1995) · Zbl 0834.16034 · doi:10.1007/BF02568007
[16] Jespers, Eric; Leal, Guilherme, Generators of large subgroups of the unit group of integral group rings, Manuscripta Math., 78, 3, 303-315 (1993) · Zbl 0802.16025 · doi:10.1007/BF02599315
[17] Jespers, E.; Parmenter, M. M.; Sehgal, S. K., Central units of integral group rings of nilpotent groups, Proc. Amer. Math. Soc., 124, 4, 1007-1012 (1996) · Zbl 0846.16028 · doi:10.1090/S0002-9939-96-03398-9
[18] Jespers, Eric; Olteanu, Gabriela; del R{\'{\i }}o, {\'A}ngel, Rational group algebras of finite groups: from idempotents to units of integral group rings, Algebr. Represent. Theory, 15, 2, 359-377 (2012) · Zbl 1259.20002 · doi:10.1007/s10468-010-9244-4
[19] Jespers, Eric; Pita, Antonio; del R{\'{\i }}o, {\'A}ngel; Ruiz, Manuel; Zalesskii, Pavel, Groups of units of integral group rings commensurable with direct products of free-by-free groups, Adv. Math., 212, 2, 692-722 (2007) · Zbl 1120.16029 · doi:10.1016/j.aim.2006.11.005
[20] Johansson, Stefan, On fundamental domains of arithmetic Fuchsian groups, Math. Comp., 69, 229, 339-349 (2000) · Zbl 0937.11016 · doi:10.1090/S0025-5718-99-01167-9
[21] Juriaans, S. O.; Passi, I. B. S.; Prasad, Dipendra, Hyperbolic unit groups, Proc. Amer. Math. Soc., 133, 2, 415-423 (electronic) (2005) · Zbl 1067.16056 · doi:10.1090/S0002-9939-04-07578-1
[22] Juriaans, S. O.; Passi, I. B. S.; Souza Filho, A. C., Hyperbolic unit groups and quaternion algebras, Proc. Indian Acad. Sci. Math. Sci., 119, 1, 9-22 (2009) · Zbl 1186.16044 · doi:10.1007/s12044-009-0002-7
[23] Juriaans, S. O.; Souza Filho, A. C., Free groups in quaternion algebras, J. Algebra, 379, 314-321 (2013) · Zbl 1327.16022 · doi:10.1016/j.jalgebra.2012.12.025
[24] Katok, Svetlana, Reduction theory for Fuchsian groups, Math. Ann., 273, 3, 461-470 (1986) · Zbl 0561.30036 · doi:10.1007/BF01450733
[25] Kleinert, E., Two theorems on units of orders, Abh. Math. Sem. Univ. Hamburg, 70, 355-358 (2000) · Zbl 0991.16011 · doi:10.1007/BF02940925
[26] Kleinert, Ernst, Units of classical orders: a survey, Enseign. Math. (2), 40, 3-4, 205-248 (1994) · Zbl 0846.16027
[27] Kleinert, Ernst, Units in skew fields, Progress in Mathematics 186, viii+80 pp. (2000), Birkh\"auser Verlag: Basel:Birkh\"auser Verlag · Zbl 1032.11052 · doi:10.1007/978-3-0348-8409-9
[28] Liehl, Bernhard, On the group \({\rm SL}_2\) over orders of arithmetic type, J. Reine Angew. Math., 323, 153-171 (1981) · Zbl 0447.20035 · doi:10.1515/crll.1981.323.153
[29] Maclachlan, Colin; Reid, Alan W., The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics 219, xiv+463 pp. (2003), Springer-Verlag: New York:Springer-Verlag · Zbl 1025.57001
[30] Olteanu, Gabriela; del R{\'{\i }}o, {\'A}ngel, Group algebras of Kleinian type and groups of units, J. Algebra, 318, 2, 856-870 (2007) · Zbl 1138.16014 · doi:10.1016/j.jalgebra.2007.03.026
[31] Passman, Donald, Permutation groups, ix+310 pp. (1968), W. A. Benjamin, Inc., New York-Amsterdam · Zbl 0179.04405
[32] Polcino Milies, C{\'e}sar; Sehgal, Sudarshan K., An introduction to group rings, Algebras and Applications 1, xii+371 pp. (2002), Kluwer Academic Publishers: Dordrecht:Kluwer Academic Publishers · Zbl 0997.20003 · doi:10.1007/978-94-010-0405-3
[33] Ratcliffe, John G., Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, xii+779 pp. (2006), Springer: New York:Springer · Zbl 1106.51009
[34] Rehmann, U., A survey of the congruence subgroup problem. Algebraic \(K\)-theory, Part I, Oberwolfach, 1980, Lecture Notes in Math. 966, 197-207 (1982), Springer: Berlin:Springer · Zbl 0498.20032
[35] Riley, Robert, Applications of a computer implementation of Poincar\'e’s theorem on fundamental polyhedra, Math. Comp., 40, 162, 607-632 (1983) · Zbl 0528.51010 · doi:10.2307/2007537
[36] Ritter, J{\"u}rgen; Sehgal, Sudarshan K., Construction of units in group rings of monomial and symmetric groups, J. Algebra, 142, 2, 511-526 (1991) · Zbl 0737.16022 · doi:10.1016/0021-8693(91)90322-Y
[37] Ritter, J{\"u}rgen; Sehgal, Sudarshan K., Construction of units in integral group rings of finite nilpotent groups, Trans. Amer. Math. Soc., 324, 2, 603-621 (1991) · Zbl 0723.16016 · doi:10.2307/2001734
[38] Ritter, J{\"u}rgen; Sehgal, Sudarshan K., Units of group rings of solvable and Frobenius groups over large rings of cyclotomic integers, J. Algebra, 158, 1, 116-129 (1993) · Zbl 0796.16025 · doi:10.1006/jabr.1993.1126
[39] Sehgal, S. K., Units in integral group rings, Pitman Monographs and Surveys in Pure and Applied Mathematics 69, xii+357 pp. (1993), Longman Scientific & Technical: Harlow:Longman Scientific & Technical · Zbl 0803.16022
[40] Sehgal, S. K., Group rings. Handbook of algebra, Vol. 3, 455-541 (2003), North-Holland: Amsterdam:North-Holland · Zbl 1078.16022 · doi:10.1016/S1570-7954(03)80069-4
[41] Shirvani, M.; Wehrfritz, B. A. F., Skew linear groups, London Mathematical Society Lecture Note Series 118, viii+253 pp. (1986), Cambridge University Press: Cambridge:Cambridge University Press · Zbl 0602.20046
[42] Swan, Richard G., Generators and relations for certain special linear groups, Advances in Math., 6, 1-77 (1971) (1971) · Zbl 0221.20060
[43] Vaser{\v{s}}te{\u \i }n, L. N., Structure of the classical arithmetic groups of rank greater than \(1\), Mat. Sb. (N.S.), 91(133), 445-470, 472 (1973) · Zbl 0277.14018
[44] Venkataramana, T. N., On systems of generators of arithmetic subgroups of higher rank groups, Pacific J. Math., 166, 1, 193-212 (1994) · Zbl 0822.22005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.