×

Hyperbolic unit groups and quaternion algebras. (English) Zbl 1186.16044

The authors classify the quadratic extensions \(K=\mathbb{Q}[\sqrt d]\) (with \(d\) an integer) and the finite groups \(G\) so that the group \(\mathcal U_1(R[G])\) of units of augmentation one in the group ring \(R[G]\) of \(G\) over the ring of integers \(R\) in \(K\) is hyperbolic in the sense of Gromov.
The investigations naturally lead to consider the unit group \(\mathcal U(H(R))\) of the quaternion algebra \(H(R)\) over \(R\). It is a highly non-trivial task to determine finitely many generators for a subgroup of finite index in this group in case \(H(K)\) is a division ring [see C. Corrales, E. Jespers, G. Leal, Á. del Río, Adv. Math. 186, No. 2, 498-524 (2004; Zbl 1053.16024)]. The authors produce and investigate new units, called Pell and Gauss units in \(H(R)\). As an application of [loc. cit.] and the obtained properties, one obtains a set of generators for the unit group \(\mathcal U(\mathbb{Z}[\sqrt{-7}])\).

MSC:

16U60 Units, groups of units (associative rings and algebras)
20F67 Hyperbolic groups and nonpositively curved groups
11R11 Quadratic extensions
16S34 Group rings
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
11R52 Quaternion and other division algebras: arithmetic, zeta functions
11R27 Units and factorization
16K20 Finite-dimensional division rings
20F05 Generators, relations, and presentations of groups

Citations:

Zbl 1053.16024

References:

[1] Arora Satya R, Nilpotent elements in group algebras, J. Indian Math. Soc. 58 (1992) 99–104 · Zbl 0900.16035
[2] Benakli N and Kapovich I, Boundaries of Hyperbolic Groups, Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001) 39–93, Contemp. Math., 296 (Providence, RI: Amer. Math. Soc.) (2002) · Zbl 1044.20028
[3] Borevich Z I and Shafarevich I R, Number Theory (Academic Press) (1966)
[4] Bridson M R and Haefliger A, Metric Spaces of Non-Positive Curvature (Berlin: Springer) (1999) · Zbl 0988.53001
[5] Corrales C, Jespers E, Leal G and del Río Á, Presentations of the unit group of an order in a non-split quaternion algebra, Adv. Math. 186 (2004) 498–524 · Zbl 1053.16024 · doi:10.1016/j.aim.2003.07.015
[6] Elstrod J, Grunewald F and Menniche J, Groups Acting on Hyperbolic Space, Springer Monographs in Mathematics (Berlin) (1998)
[7] Ghys E and de la Harpe P (eds), Sur les Groupes Hyperboliques d’aprés Mikhael Gromov, (Birkhäuser) (1990) · Zbl 0731.20025
[8] Gromov M, Hyperbolic Groups, in Essays in Group Theory, M. S. R. I. Publ. 8 (Springer) (1987) pp. 75–263
[9] Herman A, Li Y and Parmenter M M, Trivial units for group rings with G-adapted coefficient rings, Canad. Math. Bull. 48(1) (2005) 80–89 · Zbl 1080.16026 · doi:10.4153/CMB-2005-007-1
[10] Iwaki E, Juriaans S O and Souza Filho A C, Hyperbolicity of semigroup algebras, J. Algebra 319(12) (2008) 5000–5015 · Zbl 1148.16028 · doi:10.1016/j.jalgebra.2008.03.015
[11] Janusz G J, Algebraic Number Fields, Second Edition, Graduate Studies in Mathematics, vol. 7 (Amer. Math. Soc.) (1996)
[12] Jespers E, Free normal complements and the unit group of integral group rings, Proc. Amer. Math. Soc. 122 (1994) 59–66 · Zbl 0833.16032 · doi:10.1090/S0002-9939-1994-1221725-1
[13] Juriaans S O, Passi I B S and Prasad D, Hyperbolic Unit Groups, Proc. Amer. Math. Soc. 133 (2005) 415–423 · Zbl 1067.16056 · doi:10.1090/S0002-9939-04-07578-1
[14] Juriaans S O, Polcino Milies C and Souza Filho A C, Alternative algebras with quasihyperbolic unit loops, http://arXiv.org/abs/0810.4544
[15] Luthar I S and Passi I B S, Algebra Vol 2: Rings (Narosa Publishing House) (1999)
[16] Rajwade A R, A note on the Stufe of quadratic fields, Indian J. Pure Appl. Math. 6 (1975) 725–726 · Zbl 0363.12003
[17] Souza Filho A C, Sobre uma Classificação dos Anéis de Inteiros, dos Semigrupos Finitos e dos RA-Loops com a Propriedade Hiperbólica (On a classification of the integral rings, finite semigroups and RA-loops with the hyperbolic property), PhD. Thesis, IME-USP (São Paulo) (2006) 108 pages
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.